
Net Scraping a Corpus
Let's say you have a natural language model, in the form of a chat bot. To ask it a

question it must be given the relevant data, read it quickly, and spit it back to you in a

natural way. That relevant data is taken from a corpus, and one way to build a corpus is

to search the near infinite web for text related to whatever subject we want to build a

language model over. Let’s say you are building a little minion robot from the film

Despicable Me. We can use articles on the web to scrape for relevant details about the

film, and the little minion could answer questions about its master Gru, or what whatever

may have happened during the film.

Building a Knowledge Base
Given an understanding of the foundations of the web, things like HTML, CSS, and

HTTP, it’s easy to build a python script to find relevant articles to a given topic. So, to

build a knowledge base for our Minion chat bot, we scraped the web. Considering our

interest in Despicable Me, we started out with a root url for the Despicable Me Wikipedia

page. Using a library for handling requests from the web like urllib, we can open and

read URLs. So, we created a queue and searched our root URL, adding urls that met

certain criteria to the queue. If a link (another URL) on a page contained the keyword

despicable, wasn’t just a google page, and met the proper formatting, we added it to the

queue. Then, kept popping the queue while adding relevant URL’s back into it. Doing this

30 times, we had built a list of relevant links to the original wikipedia article.

For each link in this queue, we searched its content for text using the library

BeautifulSoup (BS). BS allowed us to easily interface with HTML elements acquired with

urllib and scan any URL we opened for paragraph tags. If a page successfully yielded

text, we wrote it into a numbered text file and moved on through the queue. This text,

being a little rough after just being scraped off random web sources, is then cleaned

with the text processing tools regex and nltk’s sentence tokenizer. We simply “chunked”

the text by splitting it between lines and removing whitespace. Then, we applied

nltk.sent_tokenize to further divide the text by its sentences. The clean result was then

printed in a clean text file, with each sentence separated by newlines.

This text, while readable, is not cleanly labeled for a model to reference however.

So, we processed the text further to extract important words That could be used to index

the knowledge base. By removing stop words and reducing the text to lower case alpha

characters, we were able to scan each clean file for the most common words across all



text files. The 30 most relevant links revealed the top 25 words:

It would take some work to automate removing words from other languages, so we just

manually sort out the top ten words:

With those top ten words we finally can sort back through our scanned files of

text, and store sentences containing those words into a python dictionary. This

dictionary could later be referenced to quickly find content relating directly to minions in

the context of the film. For example, if we just read text containing minions we get a wall

of text just related to the little yellow guys (or whatever they are):

We see that we find both reviews that mention the minions in passing, the minions films



in relation to their success in Despicable Me, and more. For a larger knowledge base

that is more usable for a chat bot, I’d consider actually reading all languages and just

translating everything that comes in.

How Might We Use this?
The plan is to simply convert all of this to the minion language using online API’s like

Lingo Jam. While this simple corpus isn’t enough to form fully informed messages,

imagine just chatting with a Minion chat bot you don’t understand. If we were to

hypothetically just talk to the minion we could get results like:

> Hi there what is your name?
> Bello, ka’m Bob → “Hello, I’m Bob”

> Oh. What?
> to domo dub ta lingu → “You don’t speak the language”

> What am I talking to?
> a minion da ta watton hyp "despicable me"

→ “A minion from the popular f�lm Despicable Me”
> Oh God. I hate that movie.

> pik's a gopa ore, Yi kai yai yai! aca nama tem titdak
phiens:

→ “It's a great movie! Here are some critics reviews:”

In this use case the language model doesn’t have to be that good, but it does help that

it could properly throw in proper nouns, and speak with some relevance to the source

material.

Conclusion:
I can see this being used to generate some wonderfully ironic Minion memes.

Regardless, here lies the structure to create and expand a larger corpus that could be

used to train a language model. Which is super cool!


