keras_ learning-seq-cnn

December 5, 2022

1 Images & Neural Networks

The goal of this notebook is to gain expereince with image classification using Keras, a popular

deep learning library.

1.1 Loading and Processing

I’'m importing a simple image data set from kaggle that has quite simple images of 5 different types
of rice: Arborio, Basmati, Ipsala, Jasimine, and Karacadag. They are quite plain images of a single
grain of rice on a black background, the simplest identification case for our models. The model
should be able to learn how to classify a given grain of rice to one of those 5 labels just based on

an image.

The file is imported as a zip, unzipped, and each classifcation is in it’s own subdirectory. This has

a direct guide in the keras api.

[1: # Import keras at the start!
import tensorflow as tf
from tensorflow import keras

[1: # Load the zip file downloaded from kaggle straight from local memory

from google.colab import files
uploaded = files.upload()

<IPython.core.display.HTML object>

Saving rice.zip to rice.zip

[]: [hnzip rice.zip
print("Hope that didn't take too long!")

Streaming output truncated to the last 5000 lines.

inflating:
inflating:
inflating:
inflating:
inflating:
inflating:
inflating:
inflating:

Rice_Image_Dataset/Karacadag/Karacadag
Rice_Image_Dataset/Karacadag/Karacadag
Rice_Image_Dataset/Karacadag/Karacadag
Rice_Image_Dataset/Karacadag/Karacadag
Rice_Image_Dataset/Karacadag/Karacadag
Rice_Image_Dataset/Karacadag/Karacadag
Rice_Image_Dataset/Karacadag/Karacadag
Rice_Image_Dataset/Karacadag/Karacadag

(550) . jpg

(5500)
(5501)
(5502)
(5503)
(5504)
(5505)
(5506)

-jrg
-jpg
-jrg
-jpg
-jrg
-jpg
-jrg

inflating:
inflating:
inflating:
inflating:
inflating:
inflating:
inflating:
inflating:
inflating:
inflating:
inflating:
inflating:
inflating:
inflating:
inflating:
inflating:
inflating:
inflating:
inflating:
inflating:
inflating:
inflating:
inflating:
inflating:
inflating:
inflating:
inflating:
inflating:
inflating:
inflating:
inflating:
inflating:
inflating:
inflating:
inflating:
inflating:
inflating:
inflating:
inflating:
inflating:
inflating:
inflating:
inflating:
inflating:
inflating:
inflating:
inflating:
Hope that didn't take too long!

Rice_Image_Dataset/Karacadag/Karacadag
Rice_Image_Dataset/Karacadag/Karacadag
Rice_Image_Dataset/Karacadag/Karacadag
Rice_Image_Dataset/Karacadag/Karacadag
Rice_Image_Dataset/Karacadag/Karacadag
Rice_Image_Dataset/Karacadag/Karacadag
Rice_Image_Dataset/Karacadag/Karacadag
Rice_Image_Dataset/Karacadag/Karacadag
Rice_Image_Dataset/Karacadag/Karacadag
Rice_Image_Dataset/Karacadag/Karacadag
Rice_Image_Dataset/Karacadag/Karacadag
Rice_Image_Dataset/Karacadag/Karacadag
Rice_Image_Dataset/Karacadag/Karacadag
Rice_Image_Dataset/Karacadag/Karacadag
Rice_Image_Dataset/Karacadag/Karacadag
Rice_Image_Dataset/Karacadag/Karacadag
Rice_Image_Dataset/Karacadag/Karacadag
Rice_Image_Dataset/Karacadag/Karacadag
Rice_Image_Dataset/Karacadag/Karacadag
Rice_Image_Dataset/Karacadag/Karacadag
Rice_Image_Dataset/Karacadag/Karacadag
Rice_Image_Dataset/Karacadag/Karacadag
Rice_Image_Dataset/Karacadag/Karacadag
Rice_Image_Dataset/Karacadag/Karacadag
Rice_Image_Dataset/Karacadag/Karacadag
Rice_Image_Dataset/Karacadag/Karacadag
Rice_Image_Dataset/Karacadag/Karacadag
Rice_Image_Dataset/Karacadag/Karacadag
Rice_Image_Dataset/Karacadag/Karacadag
Rice_Image_Dataset/Karacadag/Karacadag
Rice_Image_Dataset/Karacadag/Karacadag
Rice_Image_Dataset/Karacadag/Karacadag
Rice_Image_Dataset/Karacadag/Karacadag
Rice_Image_Dataset/Karacadag/Karacadag
Rice_Image_Dataset/Karacadag/Karacadag
Rice_Image_Dataset/Karacadag/Karacadag
Rice_Image_Dataset/Karacadag/Karacadag
Rice_Image_Dataset/Karacadag/Karacadag
Rice_Image_Dataset/Karacadag/Karacadag
Rice_Image_Dataset/Karacadag/Karacadag
Rice_Image_Dataset/Karacadag/Karacadag
Rice_Image_Dataset/Karacadag/Karacadag
Rice_Image_Dataset/Karacadag/Karacadag
Rice_Image_Dataset/Karacadag/Karacadag
Rice_Image_Dataset/Karacadag/Karacadag
Rice_Image_Dataset/Karacadag/Karacadag

(9958) . jpg
(9959) . jpg
(996) . jpg
(9960) . jpg
(9961) . jpg
(9962) . jpg
(9963) . jpg
(9964) . jpg
(9965) . jpg
(9966) . jpg
(9967) . jpg
(9968) . jpg
(9969) . jpg
(997) . jpg
(9970) . jpg
(9971) . jpg
(9972) . jpg
(9973) . jpg
(9974) . jpg
(9975) . jpg
(9976) . jpg
(9977) . jpg
(9978) . jpg
(9979) . jpg
(998) . jpg
(9980) . jpg
(9981) . jpg
(9982) . jpg
(9983) . jpg
(9984) . jpg
(9985) . jpg
(9986) . jpg
(9987) . jpg
(9988) . jpg
(9989) . jpg
(999) . jpg
(9990) . jpg
(9991) . jpg
(9992) . jpg
(9993) . jpg
(9994) . jpg
(9995) . jpg
(9996) . jpg
(9997) . jpg
(9998) . jpg
(9999) . jpg

Rice_Image_Dataset/Rice_Citation_Request.txt

105

Keras has a lot of great utility functions for processing functions, and thankfully I can just load the
data from file directories right into a tf.data.Dataset. It’s more like a generator for accessing the
data. We can then retrieve batches of data from the dataset as we need them. I ended up using
this simply because the utils function outputs a dataset.

image_dataset_from_directory() has a lot of default settings we are just going to use:

def image_dataset_from_directory(directory,
labels='inferred',
label_mode='int',
class_names=None,
color_mode='rgb',
batch_size=32,
image_size=(256, 256),
shuffle=True,
seed=None,
validation_split=None,
subset=None,
interpolation='bilinear',
follow_links=False,
crop_to_aspect_ratio=False,
**xkwargs) :

[]: data = keras.utils.image_dataset_from_directory("Rice_Image_Dataset",,
~seed=1234, image_size=(128, 128))

Found 75000 files belonging to 5 classes.

[1:|# We then iterate through the dataset using numpy
import numpy as np
from matplotlib import pyplot as plt
data_iterator = data.as_numpy_iterator ()

[1: batch = data_iterator.next()

[1:|# Each batch contains
1: the images loaded in as numpy arrays
2: the label of the image
Note the batch size was set to 32 by default
len(batch)
batch[0] . shape

[1: (32, 128, 128, 3)

1.1.1 Checking our Work

Using the matplotlib function (because I saw this in a lot of examples online, we are going to look
at our rice to make sure it is loaded in properly!

106

[1: fig, ax = plt.subplots(ncols=5, figsize=(20,20))
for idx, img in enumerate(batch[0][:5]):
ax[idx] . imshow(img.astype(int))
ax[idx] .title.set_text(batch[1] [idx])

100 125 100 125 0 3 50 s 100 125 100 125 0 3 50 s 100 125

Lets create a reference chart just so we can identify the different types of rice.

[]: fig, ax = plt.subplots(ncols=5, figsize=(20,4))
fig.suptitle('Rice Types')
ax[0] .set_title('arborio =
ax[1] .set_title('basmati
ax[2] .set_title('ipsala = 2
ax[3] .set_title('jasmine = 3')
ax[4] .set_title('karacadag = 4')

)

- = O
N S

The images are already shuffled so I have to search for an image of each type
I'm really hoping there is a function to do this, but then again how often
do you look through a list of tuples as i1f they are key value pairs...
labels = [0, 1, 2, 3, 4];
while(True):
batch = data_iterator.next()
for i, img in enumerate(batch[0]):
for 1 in labels:
if batch[1][i] ==
labels.remove(batch[1] [i])
ax[batch[1] [i]].imshow(img.astype(int))
if not labels:
break;

Rice Types

arborio = 0 basmati = 1 ipsala =2 jasmine = 3 karacadag = 4

100 100 100 100 100

120 120 120 120 120

0 100 125 [100 125 0 100 125

107

[1:

[]1:

1.1.2 Preprocessing

Now we are going to: 1. Scale the data into values between 0 and 1 for the efficiency of the model
1. Note that our images are stored in rgb 2. We can apply a transformation to the whole dataset
pipeiline 2. Partition the data into train and test

scaled = data.map(lambda x, y: (x/255, y))

We can verify the data <s scaled by taking a batch, and verifying the mazx
value in an image s 1

scaled_it = scaled.as_numpy_iterator()

batch = scaled_it.next()

batch[0] .max ()

We can also look at the data, just to ensure we didn't break 2t. Just note
the image values are floats mow, mot ints
fig, ax = plt.subplots(ncols=5, figsize=(20,20))
for idx, img in enumerate(batch[0][:5]):
ax[idx] . imshow (img)
ax[idx] .title.set_text(batch[1] [idx])

100 125 0 3 50 s 100 125

100 125 100 125 0 3 50 s 100 125

The data has already been shuffled, so we can split using tfds.split
This function makes up for the lack of a good way to split a df.data.dataset
def get_dataset_partitions_tf(ds, ds_size, train_split=0.8, val_split=0.1,
~test_split=0.1, shuffle=True, shuffle_size=10000):
assert (train_split + test_split + val_split) ==

if shuffle:
Specify seed to always have the same split distribution between runs
ds = ds.shuffle(shuffle_size, seed=1234)

train_size = int(train_split * ds_size)
int(val_split * ds_size)

val_size
train_ds = ds.take(train_size)
val_ds = ds.skip(train_size) .take(val_size)

test_ds = ds.skip(train_size) .skip(val_size)

return train_ds, val_ds, test_ds

108

[1:

[1:

[]:

print("Original datasize:\t",len(scaled))

train, val, test = get_dataset_partitions_tf(scaled, len(scaled), shuffle=False)
print("Training datasize:\t", len(train))

print("Validation datasize:\t",len(val))

print("Testing datasize:\t",len(test))

print("Total should be close:\t",len(train)+len(val)+len(test))

Original datasize: 2344
Training datasize: 1875
Validation datasize: 234
Testing datasize: 235

Total should be close: 2344

1.1.3 Viewing Class Distribution

As one final look into our data, we want to check to make sure the classes our evenly distributed.
The issue is we are retrieving our data in batches at this point. We’ll have to retrieve the whole
dataset at once and count the label amounts. I’'m referencing this stackoverflow.

I'm just going to keep imorting libraries as I go to make this text
easy to use out of context

import numpy as np

num_classes = 5

def count_class(counts, batch):
vy is tensor with every unique element from batch[1]
while c s the count of each of those corresponding elements
y, _, ¢ = tf.unique_with_counts(batch[1])
This function updates the given temsor (counts) with the count of the
given batch. As for expanding the dimensions of
return tf.tensor_scatter_nd_add(counts, tf.expand_dims(y, axis=1), c)

The reduce function calls a function on every element of a dataset,
aggregating the result of the reduce function (our counting method), with an
#
counts = train.reduce(
initial_state=tf.zeros(num_classes, tf.int32),
reduce_func=count_class)

Lets import matplotlib again to avoid errors
import matplotlib.pyplot as plt

Pie chart, where the slices will be ordered and plotted counter-clockwise:
labels = 'Aborio', 'Basmati', 'Ipsala', 'Jasmine', "Karacag"

sizes = counts

figl, axl = plt.subplots()
axl.pie(sizes, labels=labels, autopct='%1.1£f%%"',

109

[1:

shadow=True, startangle=90)
axl.axis('equal') # Equal aspect ratio ensures that pie is drawn as a circle.

plt.show()

Well wasn't that a fun exzercise

Karacag

Basmati Jasmine

Ipsala

We can see that our taret classes are evenly distributed, and we have a great jumping off point to
test some different neural networks!

1.2 Sequential Model

Now we create a basic feed-forward sequential model with dense layers. It’s good if we just have 1
input (our image) and we just want to learn a given classification.

from keras.models import Sequential

from keras.layers import Dense, Flatten, Dropout

model = tf.keras.models.Sequential ([
tf.keras.layers.Flatten(input_shape=(128, 128, 3)),
tf .keras.layers.Dense(16, activation='relu'),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(16, activation='relu'),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(num_classes, activation='softmax'),

D

model . summary ()

110

Model: "sequential"

Layer (type) Output Shape Param #
flatten (Flatten) (None, 49152) 0 N
dense (Dense) (None, 16) 786448
dropout (Dropout) (None, 16) 0

dense_1 (Dense) (None, 16) 272
dropout_1 (Dropout) (None, 16) 0

dense_2 (Dense) (None, 5) 85

Total params: 786,805
Trainable params: 786,805
Non-trainable params: O

model.compile(loss="'sparse_categorical_crossentropy',
optimizer='rmsprop',
metrics=['accuracy'])

Now that we have compiled the network, I did have a bit of an issue with the loss function. This
was because I didn’t store the labels categorically, so I had to read into other loss functions. Easy
solution used from this forum

history = model.fit(train, epochs=10, validation_data=val, verbose=1)

Epoch 1/10

1875/1875 [] - 116s 61lms/step - loss: 0.9801 -
accuracy: 0.5775 - val_loss: 0.5450 - val_accuracy: 0.7702

Epoch 2/10

1875/1875 [] - 106s 56ms/step - loss: 0.8501 -
accuracy: 0.6356 - val_loss: 0.6103 - val_accuracy: 0.7114

Epoch 3/10

1875/1875 [] - 110s 58ms/step - loss: 0.8097 -
accuracy: 0.6503 - val_loss: 0.4811 - val_accuracy: 0.7759

Epoch 4/10

1875/1875 [] - 115s 61ms/step - loss: 0.7934 -
accuracy: 0.6528 - val_loss: 0.5024 - val_accuracy: 0.7626

Epoch 5/10

1875/1875 [] - 117s 63ms/step - loss: 0.7775 -
accuracy: 0.6582 - val_loss: 0.4699 - val_accuracy: 0.7732

Epoch 6/10

1875/1875 [] - 112s 60ms/step - loss: 0.7769 -

111

[1:

accuracy: 0.6582
Epoch 7/10

1875/1875 [
accuracy: 0.6578
Epoch 8/10

1875/1875 [
accuracy: 0.6629
Epoch 9/10

1875/1875 [
accuracy: 0.6604

val_loss:

0.4812 - val_accuracy: 0.7708

val_loss:

val_loss:

Epoch 10/10

1875/1875 [
accuracy: 0.6637

val_loss:

val_loss:

import matplotlib.pyplot as

plt

Plot training & validation accuracy values

plt
plt
plt
plt
plt

plt.

.plot (history.history['val_accuracy'])
.plot (history.history['accuracy'])
.title('Sequential Model Accuracy')
.ylabel('Accuracy')
.xlabel ('Epoch')
plt.

legend(['Train', 'Test'], loc='upper left')
show ()

Accuracy

0775 1

0.750 1

0725 1

0.700 A

0.675 1

0650 -

0625 1

0.600 -

0575 1

Sequential Model Accuracy

] - 112s 60ms/step
0.4765 - val_accuracy: 0.7691

] - 111s 59ms/step
0.4999 - val_accuracy: 0.7588

] - 106s 57ms/step
0.4782 - val_accuracy: 0.7748

] - 113s 60ms/step
0.4623 - val_accuracy: 0.7760

loss:

loss:

loss:

loss:

0.7738

0.7634

0.7734

0.7673

- Train

Est

112

Epoch

[]:

[1:

This is a sign we need some more dense layers. However I suspect the biggest loss in accuracy was
from the downgrade in resolution in the model. Running the model with a resolution of 256 yielded
better results but would result in a very long training time in more complicated convolutional or
reccurent networks. It’s worth noting a past run of this model did preform better, with double the
resolution and layer size.

score = model.evaluate(test, verbose=0)
print('Test loss:', scorel[0])
print('Test accuracy:', score[1])

Test loss: 0.4600178599357605
Test accuracy: 0.7760915756225586

1.3 CNN: Convolutional Neural Networks

Now this is the bees knees when it comes to image processing. In a stroke of luck 3BluelBrown
released a youtube video on convolution right as this project started. Convolution (when used in
ML) allows us to regularize a neural network by focusing on large scale patterns in something like
an image, and scaling down to smaller and smaller details as a network adjusts weights. Kernels
or Filters convolve throughout the data, and with each forward pass adjusts for finding a feature
that benefits the network. I'd suggest watching the video for understanding the math behind how
a convolution layer might compress data onto a feature map.

I actually found that the convolutional network didn’t get all that much better running for 20
epochs then it did 10. The average increase in accuracy on the validation set was only ~.003, so I
went ahead and cut it down to 5 epochs, a runtime of about an hour.

from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D, Dense, Flatten, Dropout
model _CNN = Sequential ([

Conv2D(8, (3,3), 1, activation='relu', input_shape=(128,128,3)),

MaxPooling2D(),
Conv2D(16, (3,3), 1, activation='relu'),
MaxPooling2D(),
Conv2D(16, (3,3), 1, activation='relu'),
MaxPooling2D(),

Flatten(),
Dense (32, activation='relu'),
Dense(5, activation='softmax')

D
model_CNN.summary ()

Model: "sequential_1"

Layer (type) Output Shape Param #

conv2d (Conv2D) (None, 126, 126, 8) 224

113

[]1:

[]1:

max_pooling2d (MaxPooling2D

)

conv2d_1 (Conv2D)

max_pooling2d_1 (MaxPooling

2D)

conv2d_2 (Conv2D)

max_pooling2d_2 (MaxPooling

2D)

flatten_1 (Flatten)

dense_3 (Dense)

dense_4 (Dense)

(None, 63, 63, 8) 0

(None, 61, 61, 16) 1168
(None, 30, 30, 16) 0
(None, 28, 28, 16) 2320
(None, 14, 14, 16) 0
(None, 3136) 0
(None, 32) 100384
(None, 5) 165

Total params: 104,261
Trainable params: 104,261
Non-trainable params: O

model_CNN.compile(loss='sparse_categorical_crossentropy',
optimizer='adam',

metrics=['accuracy'])

history_CNN = model_ CNN.fit(train, batch_size=32, epochs=5,
~validation_data=val)

Epoch 1/5
1875/1875
accuracy:
Epoch 2/5
1875/1875
accuracy:
Epoch 3/5
1875/1875
accuracy:
Epoch 4/5
1875/1875
accuracy:
Epoch 5/5
1875/1875
accuracy:

o

o

o

o

1 - 698s 372ms/step
val_accuracy: 0.9889

] - 660s 352ms/step
val_accuracy: 0.9923

] - 655s 349ms/step
val_accuracy: 0.9951

] - 651s 347ms/step
val_accuracy: 0.9955

.9637 val_loss: 0.0372 -
.9856 val_loss: 0.0234 -
.9896 val_loss: 0.0177 -
.9928 val_loss: 0.0137 -
.9948 val_loss: 0.0087 -

] - 649s 346ms/step
val_accuracy: 0.9976

114

verbose=1, |

- loss:

- loss:

- loss:

- loss:

- loss:

0.1049

0.0435

0.0320

0.0227

0.0163

[1:

import matplotlib.pyplot as plt

Plot training & wvalidation accuracy values

plt

plt
plt
plt

.plot(history_CNN.history['val_accuracy'])
plt.
.title('Model accuracy')
.ylabel('Accuracy')
.xlabel ('Epoch')

plt.
plt.

plot (history_CNN.history['accuracy'])

legend(['Train', 'Test'], loc='upper left')
show ()

Model accuracy

— Train

0.995 - st
0,990 -
0,985 - /

0.980 -

Accuracy

0.975 -
0.970 -

09654 /

0.0 0.5 10 15 20 25
Epoch

30

35

40

Looking at that graph it’s clear we could get this to a higher accuracy with some more epochs, but
for a short experimentation this is quite alright!

score = model CNN.evaluate(test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])

Test loss: 0.009167242795228958
Test accuracy: 0.9969382286071777

115

keras learning part 2ipynb

December 5, 2022

0.1 Reloading the Data

Google Colab isn’t very fun to have to keep running, so I split the assignment into two google colab
sessions. So I am importing the data here.

import tensorflow as tf

from tensorflow import keras

import numpy as np

from matplotlib import pyplot as plt

These are constants that are referenced often
BATCH_SIZE = 32
IMG_SIZE = (255, 255)

from google.colab import files

uploaded = files.upload()

munzip rice.zip

print ("Hope that didn't take too long!")

<IPython.core.display.HTML object>

Streaming output truncated to the last 5000 lines.

inflating: Rice_Image_Dataset/Karacadag/Karacadag (550).jpg
inflating: Rice_Image_Dataset/Karacadag/Karacadag (5500).jpg
inflating: Rice_Image_Dataset/Karacadag/Karacadag (5501).jpg
inflating: Rice_Image_Dataset/Karacadag/Karacadag (5502).jpg
inflating: Rice_Image_Dataset/Karacadag/Karacadag (5503).jpg
inflating: Rice_Image_Dataset/Karacadag/Karacadag (5504).jpg
inflating: Rice_Image_Dataset/Karacadag/Karacadag (5505).jpg
inflating: Rice_Image_Dataset/Karacadag/Karacadag (5506).jpg
inflating: Rice_Image_Dataset/Karacadag/Karacadag (5507).jpg
inflating: Rice_Image_Dataset/Karacadag/Karacadag (5508).jpg
inflating: Rice_Image_Dataset/Karacadag/Karacadag (5509).jpg
inflating: Rice_Image_Dataset/Karacadag/Karacadag (551).]jpg
inflating: Rice_Image_Dataset/Karacadag/Karacadag (5510).jpg
inflating: Rice_Image_Dataset/Karacadag/Karacadag (5511).jpg
inflating: Rice_Image_Dataset/Karacadag/Karacadag (5512).jpg
inflating: Rice_Image_Dataset/Karacadag/Karacadag (5513).jpg
inflating: Rice_Image_Dataset/Karacadag/Karacadag (5514).jpg
inflating: Rice_Image_Dataset/Karacadag/Karacadag (5515).jpg

inflating: Rice_Image_Dataset/Karacadag/Karacadag (9967).jpg
inflating: Rice_Image_Dataset/Karacadag/Karacadag (9968).jpg
inflating: Rice_Image_Dataset/Karacadag/Karacadag (9969).jpg
inflating: Rice_Image_Dataset/Karacadag/Karacadag (997).jpg
inflating: Rice_Image_Dataset/Karacadag/Karacadag (9970).jpg
inflating: Rice_Image_Dataset/Karacadag/Karacadag (9971).jpg
inflating: Rice_Image_Dataset/Karacadag/Karacadag (9972).jpg
inflating: Rice_Image_Dataset/Karacadag/Karacadag (9973).jpg
inflating: Rice_Image_Dataset/Karacadag/Karacadag (9974).jpg
inflating: Rice_Image_Dataset/Karacadag/Karacadag (9975).jpg
inflating: Rice_Image_Dataset/Karacadag/Karacadag (9976).jpg
inflating: Rice_Image_Dataset/Karacadag/Karacadag (9977).jpg
inflating: Rice_Image_Dataset/Karacadag/Karacadag (9978).jpg
inflating: Rice_Image_Dataset/Karacadag/Karacadag (9979).jpg
inflating: Rice_Image_Dataset/Karacadag/Karacadag (998).jpg
inflating: Rice_Image_Dataset/Karacadag/Karacadag (9980).jpg
inflating: Rice_Image_Dataset/Karacadag/Karacadag (9981).jpg
inflating: Rice_Image_Dataset/Karacadag/Karacadag (9982).jpg
inflating: Rice_Image_Dataset/Karacadag/Karacadag (9983).jpg
inflating: Rice_Image_Dataset/Karacadag/Karacadag (9984).jpg
inflating: Rice_Image_Dataset/Karacadag/Karacadag (9985).jpg
inflating: Rice_Image_Dataset/Karacadag/Karacadag (9986).jpg
inflating: Rice_Image_Dataset/Karacadag/Karacadag (9987).jpg
inflating: Rice_Image_Dataset/Karacadag/Karacadag (9988).jpg
inflating: Rice_Image_Dataset/Karacadag/Karacadag (9989).jpg
inflating: Rice_Image_Dataset/Karacadag/Karacadag (999).jpg
inflating: Rice_Image_Dataset/Karacadag/Karacadag (9990).jpg
inflating: Rice_Image_Dataset/Karacadag/Karacadag (9991).jpg
inflating: Rice_Image_Dataset/Karacadag/Karacadag (9992).jpg
inflating: Rice_Image_Dataset/Karacadag/Karacadag (9993).jpg
inflating: Rice_Image_Dataset/Karacadag/Karacadag (9994).jpg
inflating: Rice_Image_Dataset/Karacadag/Karacadag (9995).jpg
inflating: Rice_Image_Dataset/Karacadag/Karacadag (9996).jpg
inflating: Rice_Image_Dataset/Karacadag/Karacadag (9997).jpg
inflating: Rice_Image_Dataset/Karacadag/Karacadag (9998).jpg
inflating: Rice_Image_Dataset/Karacadag/Karacadag (9999).jpg
inflating: Rice_Image_Dataset/Rice_Citation_Request.txt

Hope that didn't take too long!

[1: # I would like to use the GPU on Google Colab
Lets check if we have access for free...
tf.test.gpu_device_name ()

[1: '/device:GPU:0'

[1:

data = keras.utils.image_dataset_from_directory("Rice_Image_Dataset",
~seed=1234, batch_size=BATCH_SIZE, image_size=IMG_SIZE)

105

[]1:

[]1:

[]1:

[]:

[]1:

Found 75000 files belonging to 5 classes.

I’'m now using the preprocessing guidlenes useful for transfering our images onto MobileNetV2.
I’'m referencing this to solve issues I had with figuring out exactly what the preprocessing function
actually wants as parameters.

This function can be used later with the functional apt to preprocess the data
on the fly!
preprocess_input = tf.keras.applications.mobilenet_v2.preprocess_input

T’ll still use a 0,1 scaling for the RNN network, so I'll just set up another scaling pipeline

scaled_data = data.map(lambda x, y: (x/255, y))

The data has already been shuffled, so we can split using tfds.split
This function makes up for the lack of a good way to split a df.data.dataset
def get_dataset_partitions_tf(ds, ds_size, train_split=0.8, val_split=0.1,,
otest_split=0.1, shuffle=True, shuffle_size=10000):
assert (train_split + test_split + val_split) ==

if shuffle:
Spectify seed to always have the same split distribution between runs
ds = ds.shuffle(shuffle size, seed=1234)

train_size = int(train_split * ds_size)
val_size = int(val_split * ds_size)

train_ds ds.take(train_size)
val_ds = ds.skip(train_size) .take(val_size)
test_ds = ds.skip(train_size) .skip(val_size)

return train_ds, val_ds, test_ds

rnn_train, rnn_val, rnn_test = get_dataset_partitions_tf(scaled_data,,
~len(scaled_data), shuffle=False)

mobile_train, mobile_val, mobile_test = get_dataset_partitions_tf(data,
~len(scaled_data), shuffle=False)

0.2 RNN: Recurrent Neural Network

Now, Recurrent Neural Networks use a memory state in order to accurately creating sequential
pattern recognition. In our case, that isn’t very applicable. However, just to get used to the
concept, lets make a simple one! Because we are using an image, I went ahead and flattened the
input into a single vector that is then embedded

106

[1:

[]:

[1:

[1:

[1:

model_RNN = keras.models.Sequential()

model RNN.add(keras.layers.Flatten(input_shape=(IMG_SIZE+(3,))))
model_RNN.add(keras.layers.Embedding (1000, 32))

model _RNN.add(keras.layers.SimpleRNN(32))
model_RNN.add(keras.layers.Dense(l, activation='sigmoid'))
model_ RNN.summary ()
Model: "sequential_ 2"

Layer (type) Output Shape Param #
flatten (Flatten) (None, 195075) 0
embedding 2 (Embedding) (None, 195075, 32) 320000
simple_rnn_2 (SimpleRNN) (None, 32) 2080
dense_3 (Dense) (None, 1) 33

Total params: 322,113
Trainable params: 322,113
Non-trainable params: O

model RNN.compile(loss='sparse_categorical_crossentropy',
optimizer='rmsprop',
metrics=['accuracy'])

Now I just couldn’t get this poor model to train in a manageable time frame with good results. I
think that this archiecture isn’t really suited to the classification being done here anyway, so I'm
safe saying the result here wouldn’t have been that impactful on my understanding of the model
architecture.

0.3 Pretrained Model Transfer

We will be using the the guide for transfer learning from TensorFlow. It thankfully already uses
the the data pipeline I was using for previous models, and showed me how to do a lot of things,
like displaying class names much easier.

Following the guide, we configure the data a bit for performance using autotune:

AUTOTUNE = tf.data.AUTOTUNE

mobile_train = mobile_train.prefetch(buffer_size=AUTOTUNE)

107

[1:

[]:

[]1:

mobile_val = mobile_val.prefetch(buffer_size=AUTOTUNE)
mobile_test = mobile_test.prefetch(buffer_size=AUTOTUNE)

print ('Number of training batches: %d' % tf.data.experimental.
~cardinality(mobile_train))

print ('Number of validation batches: %d' 7 tf.data.experimental.
~cardinality(mobile_val))

print('Number of test batches: %d' 7, tf.data.experimental.
~cardinality(mobile_test))

Number of training batches: 1875
Number of validation batches: 234
Number of test batches: 235

We then load in every layer of the pretrained model except for the last one, which we plan to
replace with our own classification layer

Create the base model from the pre-trained model MobileNet V2

IMG_SHAPE = IMG_SIZE + (3,)

Imports images from the data set in a tensor.shape = (255, 255, 3)

with the pizels on a scale from -1 to 1

base_model = tf.keras.applications.MobileNetV2(input_shape=IMG_SHAPE,
include_top=False,
weights='imagenet')

WARNING:tensorflow: "input_shape™ is undefined or non-square, or "rows is not in
[96, 128, 160, 192, 224]. Weights for input shape (224, 224) will be loaded as
the default.

Downloading data from https://storage.googleapis.com/tensorflow/keras-applicatio
ns/mobilenet_v2/mobilenet_v2_weights_tf_dim_ordering tf_kernels_1.0_224 no_top.h
5

9406464/9406464 [] - Os Ous/step

Below is an example of a feature extractor...

“This feature extractor converts each [255]x[255|x3 image into a 5x5x1280 block of
features. Let’s see what it does to an example batch of images:”

I reckon that this is for making each image have smaller subcomponents easier for feature detection,
and this exactly what happens in the model as our inputs are convoluted through the model.

image_batch, label_batch = next(iter(mobile_train))
print (image_batch.shape)

feature_batch = base_model (image_batch)

print (feature_batch.shape)

(32, 255, 255, 3)
(32, 8, 8, 1280)

Now we have the data in the right form, we want to freeze the base of the model (a convolutional
model by the way), and add our own categorical layer at the top.

108

[1:

[]1:

[]1:

[1:

base_model.trainable = False
Now this is a complicated model!
base_model . summary ()

To add a classification layer/head, we want to average the 8x8 sections of each image we divied out
in the last step. This means we will have a layer of only one 1280 element vector that represents

an average of the previous layer

global_average_layer = tf.keras.layers.GlobalAveragePooling2D()
feature_batch_average = global_average_layer(feature_batch)
print (feature_batch_average.shape)

(32, 1280)

After creating a layer to find the average of the previous layer, we want to convert the layers to
prediction per image. We have 5 different classes, so we have a Dense layer with 5 nodes, and I'm
picking an activation function of softmax since it will probably fit the categorical distribution the

best.

prediction_layer = tf.keras.layers.Dense(5, activation="softmax")
prediction_batch = prediction_layer (feature_batch_average)
print(prediction_batch.shape)

(32, 5)

We can now build a model by chaining all of these elements together. The guide uses the functional
method of building a model rather then the sequential so might have to get a bit confused here. In
the functionaly API, you continuously call layers on an input object. The kind of obtuse part of
this API is that you can apply all these function mappings and layers with all the same syntax! 1
reccomend reading the Functional API if you want to know what happens under the hood in this

code block

So we would define the input

inputs = tf.keras.Input(shape=(255, 255, 3))

We can then preprocess the data by just calling the preprocess function
this allows us to use more of a data pipeline

x = preprocess_input (inputs)

Then we can apply all of the layers from the base model

X = base_model(x, training=False)

Add our previously created average layer that will average the output of the
last layer in the base_model, which should be of the shape (8, 8, 1280)
x = global_average_layer (x)

We add a dropout here... because we can!

x = tf.keras.layers.Dropout(0.2) (x)

outputs = prediction_layer (x)

model = tf.keras.Model(inputs, outputs)

We then must compile this model before training it. Note that we will be wusing
tf.keras.losses.sparse_categorical_crossentroypy since by default our labels are ints and
changing them to a one hot encoding of categorical data makes the data a bit harder to explore.

109

The one hot encoding would train better, but it shouldn’t effect the actual accuracy of the final
model.

[]: base_learning rate = 0.0001
model . compile(optimizer=tf.keras.optimizers.
~Adam(learning rate=base_learning_rate),
loss=tf.keras.losses.sparse_categorical_crossentropy,
metrics=['accuracy'])

[1: model.summary()

Model: "model"

Layer (type) Output Shape Param #
input_2 (InputLayer) [(None, 255, 255, 3)] 0
tf.math.truediv (TFOpLambda (None, 255, 255, 3) 0

)

tf.math.subtract (TFOpLambd (None, 255, 255, 3) 0

a)

mobilenetv2_1.00_224 (Funct (None, 8, 8, 1280) 2257984
ional)

global_average_pooling2d (G (None, 1280) 0

lobalAveragePooling?2D)
dropout (Dropout) (None, 1280) 0

dense (Dense) (None, 5) 6405

Total params: 2,264,389
Trainable params: 6,405
Non-trainable params: 2,257,984

We can see above how all of our layers ended up in the final model, finally verifying that convultion
did indeed give us a image shape of (8, 8, 1280) before our average pooling layer.

Lets train! The guide actually has us set a baseline loss and accuracy before we fit the model, nifty!
Unfortunately we don’t really have the time for a baseline comparison...

[]1: initial_epochs = 3
loss0, accuracyO = model.evaluate(mobile_val)
print ("initial loss: {:.2f}". format(loss0))
print("intitial accuracy: {:.2f}".format (accuracy0))

110

[1:|# We have the epoch set so low because... life is short
history = model.fit(mobile_train,
epochs=initial_epochs,
validation_data=mobile val)

Epoch 1/3

1875/1875 [] - 196s 103ms/step - loss: 0.4076 -
accuracy: 0.8825 - val_loss: 0.1265 - val_accuracy: 0.9736

Epoch 2/3

1875/1875 [==============================] - 186s 99ms/step - loss: 0.1179 -
accuracy: 0.9693 - val_loss: 0.0779 - val_accuracy: 0.9812

Epoch 3/3

1875/1875 [] - 185s 99ms/step - loss: 0.0844 -

accuracy: 0.9754 - val_loss: 0.0620 - val_accuracy: 0.9838

[1: acc = history.history['accuracy']
val_acc = history.history['val_accuracy']
print("Accuracy over epochs: ", acc)

loss = history.history['loss']
val_loss = history.history['val_loss']

plt.figure(figsize=(8, 8))

plt.subplot(2, 1, 1)

plt.plot(acc, label='Training Accuracy')
plt.plot(val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.ylabel('Accuracy')
plt.ylim([min(plt.ylim()),1])
plt.title('Training and Validation Accuracy')

plt.subplot(2, 1, 2)

plt.plot(loss, label='Training Loss')
plt.plot(val_loss, label='Validation Loss')
plt.legend(loc="upper right')
plt.ylabel('Cross Entropy')
plt.ylim([0,1.0])

plt.title('Training and Validation Loss')
plt.xlabel('epoch')

plt.show()

Accuracy over epochs: [0.8824833035469055, 0.9692999720573425,
0.9753666520118713]

111

Training and Validation Accuracy

090 4 —— Training Accuracy
Validation Accuracy

0.00 0.25 050 075 100 125 150 175 200
Training and Validation Loss

10
— Training Loss

‘Walidation Loss

= (=} (5]
i i i

Crass Entropy

=]
[
i

=]
f

Note that the validation metrics are better than the training metrics because layers that
prevent overfitting like dropout and batch normalization are turned off when calculating
validation loss (sense that doesn’t benefit the model)

1 Analysis

The first thing I want to state is that I definitely learned how this api works by the end of this
project, and I regret not having thoroughly reviewing the API at the start. With my learning as 1
went, as well as trying to understand how each architcture works, there wasn’t much time to really
train my models. However, I've gained some insights into the 4 approaches used.

1. A vanilla sequential model

112

2. A basic CNN model
3. A basic RNN model
4. A CNN model made from Google’s MobileNetV2

Really the trend shown in my experiment is that better convolution networks result in better
performance in the final model. While a basic dense sequential model mimics pattern recognition
to an easily understandable degree, it only approximates a capacity for feature selection. Our
convolutional networks instead manually add a feature selection process through convolution. We
can see that this directly results in higher accuracy in our models. This is of course directly opposed
to an RNN model where the new memory state doesn’t do much to help with image recognition.

The convolutional model taken from MobileNetV2 takes this all a step further, with a large model
already tuned for feature selection in images. We basically are given a model that can recognize
features embedded on a manifold of our 2D image space, that space being more grounded in what
images actually look like. By starting there our model can more generaly expand to classify outliers,
as well as expect a touch more accuracy. We get that reflected improvement, however, its dampened
by how clinically clean our rice images are.

Note: For a easy comparison between the efficiency of these methods, the transfer
network probably had a much higher ceiling for how well it could identify rice given the
training data, but because there was so little noise in the data, it was much easier to get
a quickly trained model from a simple CNN then go through all the trouble transfering
performance from google. If I were using a much more complex dataset with hope for
expansion, I would most likely use MobileNetworkV2. Especially if I had more training
time then I do now (about 2 hours til the deadline)

This was all still a worthwhile exploration into image recognition, and I'm now a bit curious as to
how we can use this as a jumping off point into image stitching and general manipulation. Oh and
also, as convenient as Google Colab is, I have a 3080 graphics card in my laptop, which could train
the model well over 10x faster then what this cloud comput option gives me. Time to set up a local
envrionoment!

113

