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Initial Processing W H AT I S O U R DATA?

Visual Exploration Using the dataset Spotify Unpopular Songs (https://www.kaggle.com/datasets/estienneggx/spotify-unpopular-songs). It
contains audio characteristics of many unpopular songs such as perceived intensity, key, decibels, popularity, and more.

What is Our Data?

Exploring Our Data

Di i lity Algorith
imensionatity Atgorithms Here, we're going to attempt to see if we can manage to find a way to sort songs into general classes (horrible, bad, meh, and

. . - . passable) based off their popularity scores.
Linear Discriminant Analysis

Conclusion and Analysis EXPLO RING OUR DATA
INITIAL PROCESSING

In this notebook, we will be performing dimensionality reduction to attempt to improve performance and accuracy in kNN
regression.

Let's read in the data and take a peek.

library(caret)
## Loading required package: ggplot2
## Loading required package: lattice

df <- read.csv("data/unpopular_songs.csv")
summary (df)

##  danceability energy key loudness

## Min.  :0.0000 Min.  :0.0000203  Min. 0.000 Min. :-51.808
## 1st Qu.:0.4420 1st Qu .3790000 1st Qu.: 2.000 1st Qu.:-13.796
## Median :0.6020 Median :0.5690000 Median : 5.000 Median : -9.450@
## Mean 8.5725 Mean .5497713 Mean 5.223 Mean :1-11.359
## 3rd Qu.:0.7300  3rd Qu.:0.7450000  3rd Qu.: 9.000 3rd Qu.: -6.726
##  Max. ©.9860 Max. :1.0000000 Max. :11.608 Max. : 3.108
#i mode speechiness acousticness instrumentalness

## Min. ©.000 Min.  :0.0000 Min. :0.0000 Min.  :0.000000

## 1st Qu.:0.000 1st Qu.:0.0384 1st Qu.:0.0365 1st Qu.:0.000000

## Median :1.000 Median :0.0589  Median :0.2330 Median :0.000133

## Mean 0.641 Mean :10.1380 Mean 0.3542 Mean 10.232943

## 3rd Qu.:1.000 3rd Qu.:0.1880  3rd Qu.:0.6570  3rd Qu.:0.517000

## Max. :1.000 Max.  :0.9620  Max. 0.9960 Max. :1.000000
##t liveness valence tempo duration_ms

## Min.  :0.0000  Min. .6@00  Min. : @.e Min. : 4693

## 1st Qu.:6.0993  1st Qu.:0.2380  1st Qu.: 93.0  1st Qu.: 151152

## Median :0.1296  Median :0.4680  Median :117.1 Median : 197522

## Mean :10.2121 Mean :10.4646 Mean :1117.8 Mean i 205578

## 3rd Qu.:0.2680  3rd Qu.:0.6850 3rd Qu.:138.9  3rd Qu.: 244428

## Max. :10.9990 Max. :10.9950 Max. 1239.5 Max. 13637277

#it explicit popularity track_name track_artist
## Length:10877 Min. : 0.000 Length:10877 Length:10877
## Class :character 1st Qu.: 1.000 Class :character Class :character
## Mode :character Median : 2.06@ Mode :character Mode :character
## Mean  : 3.079

#it 3rd Qu.: 3.000

#i Max.  :18.000

#it track_id

## Length:10877
## Class :character
## Mode :character
##

#H

##

We can see we largely have quantitative data, with a few exceptions. Not all of these are useful, but we'll make whether or
not its explicit a factor for now, as well as popularity (after we look at correlation). We'll also look for correlated values.

dfgexplicit <- as.factor(df$explicit)
summary (df)


https://www.kaggle.com/datasets/estienneggx/spotify-unpopular-songs

##  danceability energy key loudness

## Min.  :0.0000 Min.  :0.0000203  Min. 0.000 Min. :-51.808
## 1st Qu.:0.4420  1st Qu.:0.3790000  1st Qu.: 2.000 1st Qu.:-13.796
## Median :0.6020 Median :0.5690000 Median : 5.000 Median : -9.450
## Mean  :0.5725 Mean  :0.5497713  Mean  : 5.223 Mean  :-11.359
## 3rd Qu.:0.7300  3rd Qu.:0.7450000 3rd Qu.: 9.000 3rd Qu.: -6.726
## Max. :10.9860 Max . 1.0000000 Max. :11.000 Max. H 3.108
#it mode speechiness acousticness instrumentalness

## Min. .000 Min. :10.0000 Min. .0000 Min. :10.000000
## 1st Qu.:0.000 1st Qu.:0.0384  1st Qu.:0.8365 1st Qu.:0.000000

## Median .000 Median :0.0589 Median .2330 Median :0.000133
##  Mean .641  Mean  :0.1380  Mean 03542 Mean  :0.232943

## 3rd Qu.:1.000 3rd Qu.:0.1880  3rd Qu.:0.6570  3rd Qu.:0.517000

## Max. :1.000 Max. :0.9620 Max. :0.9960 Max. :1.000000
#it liveness valence tempo duration_ms

## Min.  :0.0000 Min. :0.0000 Min. : ©.0 Min. : 4693

## 1st Qu.:0.0993  1st Qu.:0.2380 1st Qu.: 93.@  1st Qu.: 151152

## Median :0.1290 Median :0.4680 Median :117.1 Median : 197522

##  Mean .2121  Mean  :0.4646 Mean  :117.8 Mean : 205578

## 3rd Qu .2680 3rd Qu.:0.6850 3rd Qu.:138.9 3rd Qu.: 244428

## Max. 9990 Max. ©.9950  Max.  :239.5 Max. :3637277

##  explicit popularity track_name track_artist

## False:7945 Min. : 0.000 Length:10877 Length:10877

## True :2932  1st Qu.: 1.800 Class :character Class :character

## Median : 2.00@ Mode :character Mode :character

#it Mean  : 3.079

## 3rd Qu.: 3.000

#it Max.  :18.000

## track_id

## Length:10877
## Class :character
## Mode :character

cor(df[c(1,2,3,4,5,6,7,8,9,10,11,12,14)])

#H danceability energy key loudness

## danceability 1.0000000000 ©.10357554 ©.001416440 ©0.384798006

## energy ©.1035755370 1.00000000 ©.032847557 ©.668247944

## key ©.0014164396 ©.03284756 1.000000000 ©0.020238291

## loudness ©.3847980060 ©.66824794 ©.020238291 1.000000000

## mode -0.0424166570 -0.04371262 -0.174170158 ©.007144594

## speechiness ©.2880560637 ©.06065882 -0.003339108 0.067091927

## acousticness -0.2537596673 -0.57807060 -0.017360855 -0.491999477

## instrumentalness -0.3345776576 -0.31475687 -0.026367389 -0.547322987

## liveness -0.2502105046 ©.25837921 -0.001745424 -0.018978820

## valence 0.5171426279 ©.31726610 ©.015964344 0.426772633

## tempo 0.0900580502 ©.17122835 -0.003040262 ©.202227504

## duration_ms ©.0004830046 ©.15201424 ©.006044278 ©.195281479

## popularity ©.1597255536 ©.05469420 -0.002388392 ©.149949613

#H mode speechiness acousticness instrumentalness
## danceability -0.0424166570 ©.288056064 -0.25375967 -0.334577658
## energy -0.0437126214 ©.060658817 -0.57807060 -0.314756871
## key -0.1741701578 -0.003339108 -0.01736086 -0.026367389
## loudness 0.0071445943 ©.067091927 -0.49199948 -0.547322987
## mode 1.0000000000 -0.087636772  ©.03888040 -0.063920945
## speechiness -0.0876367717 1.000000000 -0.11592434 -0.273849185
## acousticness ©.0388803990 -0.115924341  1.00000000 ©.291033539
## instrumentalness -0.0639209452 -0.273849185  ©.29103354 1.000000000
## liveness -0.0241449112 ©.050249663 -0.02456814 -0.008284127
## valence 0.0002389504 ©.115257854 -0.21538759 -0.335547352
## tempo ©.0171224145 ©.038543375 -0.18312285 -0.119385544
## duration_ms ©.0351389868 -0.098355503 -0.11730165 -0.148671815
## popularity -0.0454684641 ©.050489909 -0.11698471 -0.075279942
#H liveness valence tempo  duration_ms

## danceability -0.250210565 ©.5171426279 ©.090058050 ©0.0004830046

## energy ©.258379213 ©.3172660977 ©.171228345 ©.1520142437

## key -0.001745424 0.0159643436 -0.003040262 ©0.0060442781

## loudness -0.018978820 ©.4267726333 ©0.202227504 ©.1952814794

## mode -0.024144911 0.0002389504 ©.017122414 ©.0351389868

## speechiness ©.050249663 ©.1152578541 ©.038543375 -0.0983555028

## acousticness -0.024568144 -0.2153875874 -0.183122846 -0.1173016518

## instrumentalness -0.008284127 -0.3355473521 -0.119385544 -0.1486718149

## liveness 1.000000000 -0.1129996078 -0.029490757 ©.0683864612

## valence -0.1129996068 1.0000000000 ©.172984416 ©0.0460316403

## tempo -0.029490757 ©.1729844162 1.000000000 ©0.0509919444

## duration_ms ©.068386461 ©0.0460316403 ©.050991944 1.0000000000

## popularity -0.066955096 ©.0358241022 ©.061602311 -0.0250484441

#H popularity

## danceability 0.159725554

## energy 0.054694203

## key -0.002388392

## loudness 0.149949613

## mode -0.045468464

## speechiness 0.050489909

## acousticness -0.116984708

## instrumentalness -0.075279942

## liveness -0.066955096

## valence 0.035824102

## tempo 0.061602311

## duration_ms -0.025048444

## popularity 1.000000000

dfgpopularity <- as.factor(df$popularity)

We don’t see a ton of clearly related values, though how many attributes we have does make it difficult to read. We’'ll hope
that the algorithms will do well at reducing the amount of attributes we have entering into this data.

Let’s take a closer look at popularity, now that its factored.

summary (df$popularity)

#H 2] 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15
## 2694 2101 2146 1494 457 309 212 137 112 59 80 45 59 248 544 152
## 16 17 18
## 19 5 4

Hmm, a few too many factors. Let’'s combine some of these with respect to how many are in each category.



#install.packages("forcats")

library(forcats)

popularityclass <- fct_collapse(df$popularity, horrible=c('@','1'), bad=c('2','3
meh=c('6','7',"8','9","'10","11",'12"), passable=c('13','14','15"','16",'17

4','5"),

dfgpopclass <- popularityclass

And now we'll be sure it worked.

summary (df$popclass)

## horrible bad meh passable

## 4795 4406 704 972

names (df)

## [1] "danceability" "energy"” "key" loudness”

## [5] "mode” "speechiness"” "acousticness” nstrumentalness”
## [9] "liveness"” "valence" "tempo" "duration_ms"

## [13] "explicit” "popularity" "track_name" "track_artist”

## [17] "track_id" "popclass”

Cheers! Let’s separate it into training data now.

i <- sample(1:nrow(df),nrow(df)*.8,replace=FALSE)
train <- df[i,]
test <- df[-i,]

VISUAL EXPLORATION

Now, let’s look at some charts to understand things a bit better.

pairs(df[c(3,4,6,8,9,11)])
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plot(density(df$loudness),lwd=2)
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density.default(x = df$loudness)
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density.default(x = df$tempo)

0.012
|

Density
0.008
|

0.004

0.000
|
\

I I I I I I
0 50 100 150 200 250

N = 10877 Bandwidth =4.375

plot(density(df$speechiness),lud=2)
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We confirm that key, liveliness, and tempo are not very useful. We can now better understand how the data is laid out, and
confirmed that correlation is difficult to find. This is why we will be using a kNN model to test dimensionality on this data.

DIMENSIONALITY ALGORITHMS

Okay, now let's run PCA on the data. We have a lot of columns to consider. We'll center and scale them while we're at it.

set.seed(2022)
pca_out <- preProcess(train[,1:10], method=c("center”,"scale","pca"),k=5)

pca_out

## Created from 8701 samples and 1@ variables

#it
## Pre-processing:

## - centered (10)

## - ignored (@)

## - principal component signal extraction (1)
## - scaled (10)

#it

## PCA needed 9 components to capture 95 percent of the variance

We weren’t able to remove much.

Let’s plot what we got. We'll put them on 3 separate 3d charts.
train_pc <- predict(pca_out,train[,1:10])
test_pc <- predict(pca_out, test[,1:10])

#install.packages("plotly")
library(plotly)



#it
## Attaching package: 'plotly’

## The following object is masked from 'package:ggplot2':

## last_plot

## The following object is masked from ‘package:stats':

## filter

## The following object is masked from 'package:graphics':

## layout

plot_ly(x=test_pc$PCl, y=test_pc$PC2, z=test_pc$PC3, type="scatter3d”, mode="markers",color=test$popclass)

horrible
bad

meh
passable

plot_ly(x=test_pc$PC4, y=test_pc$PC5, z=test_pc$PC6, type="scatter3d”, mode="markers",color=test$popclass)

horrible
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meh
passable

plot_ly(x=test_pc$PC7, y=test_pc$PC8, z=test_pc$PC9, type="scatter3d", mode="markers",color=test$popclass)
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Things are not looking promising. We can hope that since it wasn't able to reduce much, though, that using all the predictors
it created will help more, even if we can't visualize it.
Let's try kNN on it.
library(class)
train_df <-
data.frame(train_pc$PC1,train_pc$PC2,train_pc$PC3,train_pc$PC4,train_pc$PC5,train_pc$PC6,train_pc$PC7,train_pc$PCs,t
train$popclass)
test_df <-
data.frame(test_pc$PCl,test_pc$PC2,test_pc$PC3,test_pc$PC4,test_pc$PCS5,test_pc$PC6,test_pc$PC7,test_pc$PC8,t

est_pc$PC9, test$popclass)

predknn <- knn(train=train_df[,1:9], test=test_df[,1:9], cl=train_df[,10], k=5)
mean(predknn==test$popclass)

## [1] 0.4852941

confusionMatrix(data=predknn, reference=test$popclass)

## Confusion Matrix and Statistics

##

## Reference

## Prediction horrible bad meh passable

## horrible 544 368 54 76

#4# bad 348 498 62 89

## meh 18 14 5 6

##  passable 33 44 8 9

##

## Overall Statistics

##

## Accuracy : ©.4853

#H 95% CI : (©.4641, ©.5065)

## No Information Rate : 0.4334

## P-Value [Acc > NIR] : 6.192e-07

##

#4 Kappa : ©.1323

##

## Mcnemar's Test P-Value : 1.880e-15

##

## Statistics by Class:

##

#4# Class: horrible Class: bad Class: meh Class: passable
## Sensitivity 0.5769 0.5390 0.038760 ©.050000
## Specificity ©0.5961 0.6014 0.981436 ©.957415
## Pos Pred Value 0.5221 0.4995 0.116279 ©.095745
## Neg Pred Value 0.6481 0.6387 ©0.941866 ©.917867
## Prevalence 0.4334 0.4246 ©.059283 0.082721
## Detection Rate 0.2500 0.2289 0.002298 ©.004136
## Detection Prevalence 0.4789 0.4582 0.019761 ©.043199
## Balanced Accuracy 0.5865 0.5702 0.510098 ©0.503707

Well, this doesn’t seem like it was too helpful. We have a less than 50% chance of getting our classification correct, even
we're looking at our larger trained classes. This well may be simply due to poor correlation in data, however. We weren’t
even able to reduce the data much. On another data set, PCA may be more beneficial.

LINEAR DISCRIMINANT ANALYSIS

Let's see if LDA works better for our data set. However, we know well that out data is not linear, so hopes are low.

library(MASS)

##
## Attaching package: 'MASS'

## The following object is masked from 'package:plotly':
##
#4# select

ldapop <- MASS::lda(x=train[,1:12],grouping=train$popclass, data=train)
#1ldapop <- lda(train$popclass~., data=train)
ldapop$means



## danceability energy key loudness mode speechiness

## horrible ©.5440875 ©.5471038 5.318536 -12.428731 0.6542056 0.1432161
## bad ©.5804911 ©.5367301 5.237507 -10.940616 0.6496267 0.1228314
## meh ©.6071285 0.6039334 4.968696 -9.113452 0.6626087 0.1495861
## passable ©.6549184 0.5773484 5.305556 -9.391605 0.5429293 0.1741463
# acousticness instrumentalness liveness valence  tempo duration_ms
## horrible 9.3897951 ©.2513320 0.2324003 0.4443876 116.4034 202060.6
## bad 0.3471737 ©.2352933 ©.1956088 0.4788491 118.2083 212001.6
## meh 0.2722616 ©.1311003 ©.2015706 ©.4814607 122.3585 218305.2
## passable 0.2690076 0.1862304 ©.1900961 0.4776485 120.6720 181039.0

Means were found well, and everything looks good. We have to break it up for the sake of Plotly syntax, as it seemed to have
some confusion due to commas in predictor names. PCA was strictly dimension reduction, but LDA also predicts, so we won't
be using kNN this time.

1da_pred <- predict(ldapop,newdata=test[,1:12],type="class")
head(lda_pred$class)

## [1] horrible bad bad horrible bad bad
## Levels: horrible bad meh passable

#lda_train <- predict(ldapop,data=train,type="class")

We know the majority of our data is in the ‘bad’ or 'horrible’ range, so all looks good here.
Now, let’s plot it!
library(plotly)

plot(lda_pred$x[,1], lda_pred$x[,3], pch=c(16,17,18,15)[unclass(test_pc$popclass)],
col=c("red","orange","yellow","green")[unclass(test$popclass)])
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Ida_pred$x[, 1]

xaxis <- lda_pred$x[,1]
yaxis <- lda_pred$x[,2]
zaxis <- lda_pred$x[,3]
target<- test$popclass
plot_ly(x=xaxis,y=yaxis,z=zaxis,type="scatter3d",mode="markers",color=target)
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Things are not looking promising. It looks largely the same as any of our charts from principal components, even though we
were able to chart all the attributes that were produced to see a visible appearance in one go this time.

We now can check our confusion matrix and look into how well we actually managed to predict data.

library(class)
mean(lda_pred$class==test$popclass)

## [1] 0.4779412

confusionMatrix(data=lda_pred$class, reference=test$popclass)

## Confusion Matrix and Statistics

##

#h Reference

## Prediction horrible bad meh passable

##  horrible 551 435 68 83

## bad 392 489 61 97

## meh ] ] ] ]

## passable e o o 0

#it

## Overall Statistics

##

## Accuracy : ©.4779

#i# 95% CI : (©.4568, ©.4992)

#h No Information Rate : ©.4334

## P-Value [Acc > NIR] : 1.58e-05

#h

#i Kappa : ©.0854

#h

## Mcnemar's Test P-Value : NA

#H

## Statistics by Class:

##

## Class: horrible Class: bad Class: meh Class: passable
## Sensitivity 0.5843 0.5292 0.00000 0.00000
## Specificity 0.5247 0.5607 1.00000 1.00000
## Pos Pred Value 0.4846 0.4706 NaN NaN
## Neg Pred Value 0.6227 0.6174 0.94072 0.91728
## Prevalence 0.4334 0.4246 0.05928 0.08272
## Detection Rate 0.2532 0.2247 ©.00000 ©.00000
## Detection Prevalence 0.5225 0.4775 0.00000 0.00000
## Balanced Accuracy 0.5545 0.5450 0.50000 0.50000

The model entirely failed for ‘okay’ and ‘passable’ songs, which is not surprising considering our model visualization. It did
slightly better than PCA with kNN, however. We are effectively worse than a coin flip, made worse only by there being 4
potential classes to choose from.

CONCLUSION AND ANALYSIS

We chose this data since it being advertised for clustering made it seem like it would be good for kNN as well, and that the
reduction would help simplify the large number of attributes. However, after interacting with it, this expectation was folly on
our part. There is more that goes into making a dataset good for kNN. Thinking about the nature of our data, of bad songs on
Spotify, we can also conclude that there isn't a ton of trend with what makes a song “bad”. Perhaps from this data a genre
may be able to be found via clustering, but popularity isn't an equation of things such as tempo, energy, instruments, or
anything else. Sometimes a song is just bad for content or other reasons. When it came down to it, PCA+kNN and LDA
effectively made a coin flip then rated a song as ‘bad’ or ‘horrible’. While the PCA attempt was able to occasionally succeed
for the smaller classes, LDA may well have been more accurate due to the fact that it stuck to the larger classes and did not
try to sort anything into the smaller classes. Since the values were so scattered, increasing the amount of data likely would
not have helped significantly. The reality of it is that there is not much correlation, and that we have learned that PCA nor
LDA is able to find or create correlation where there is none.
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