DIMENSIONALITY

AARUSHI PANDEY L BRANDON RUNYON 2 ZACHARY CANOOT 2 GRAY SIMPSON 4
09 OCTOBER, 2022

Initial Processing W H AT I S O U R DATA?

Visual Exploration Using the dataset Spotify Unpopular Songs (https://www.kaggle.com/datasets/estienneggx/spotify-unpopular-songs). It
contains audio characteristics of many unpopular songs such as perceived intensity, key, decibels, popularity, and more.

What is Our Data?

Exploring Our Data

Di i lity Algorith
imensionatity Atgorithms Here, we're going to attempt to see if we can manage to find a way to sort songs into general classes (horrible, bad, meh, and

. . - . passable) based off their popularity scores.
Linear Discriminant Analysis

Conclusion and Analysis EXPLO RING OUR DATA
INITIAL PROCESSING

In this notebook, we will be performing dimensionality reduction to attempt to improve performance and accuracy in kNN
regression.

Let's read in the data and take a peek.

library(caret)
Loading required package: ggplot2
Loading required package: lattice

df <- read.csv("data/unpopular_songs.csv")
summary (df)

danceability energy key loudness

Min. :0.0000 Min. :0.0000203 Min. 0.000 Min. :-51.808
1st Qu.:0.4420 1st Qu .3790000 1st Qu.: 2.000 1st Qu.:-13.796
Median :0.6020 Median :0.5690000 Median : 5.000 Median : -9.450@
Mean 8.5725 Mean .5497713 Mean 5.223 Mean :1-11.359
3rd Qu.:0.7300 3rd Qu.:0.7450000 3rd Qu.: 9.000 3rd Qu.: -6.726
Max. ©.9860 Max. :1.0000000 Max. :11.608 Max. : 3.108
#i mode speechiness acousticness instrumentalness

Min. ©.000 Min. :0.0000 Min. :0.0000 Min. :0.000000

1st Qu.:0.000 1st Qu.:0.0384 1st Qu.:0.0365 1st Qu.:0.000000

Median :1.000 Median :0.0589 Median :0.2330 Median :0.000133

Mean 0.641 Mean :10.1380 Mean 0.3542 Mean 10.232943

3rd Qu.:1.000 3rd Qu.:0.1880 3rd Qu.:0.6570 3rd Qu.:0.517000

Max. :1.000 Max. :0.9620 Max. 0.9960 Max. :1.000000
##t liveness valence tempo duration_ms

Min. :0.0000 Min. .6@00 Min. : @.e Min. : 4693

1st Qu.:6.0993 1st Qu.:0.2380 1st Qu.: 93.0 1st Qu.: 151152

Median :0.1296 Median :0.4680 Median :117.1 Median : 197522

Mean :10.2121 Mean :10.4646 Mean :1117.8 Mean i 205578

3rd Qu.:0.2680 3rd Qu.:0.6850 3rd Qu.:138.9 3rd Qu.: 244428

Max. :10.9990 Max. :10.9950 Max. 1239.5 Max. 13637277

#it explicit popularity track_name track_artist
Length:10877 Min. : 0.000 Length:10877 Length:10877
Class :character 1st Qu.: 1.000 Class :character Class :character
Mode :character Median : 2.06@ Mode :character Mode :character
Mean : 3.079

#it 3rd Qu.: 3.000

#i Max. :18.000

#it track_id

Length:10877
Class :character
Mode :character
##

#H

##

We can see we largely have quantitative data, with a few exceptions. Not all of these are useful, but we'll make whether or
not its explicit a factor for now, as well as popularity (after we look at correlation). We'll also look for correlated values.

dfgexplicit <- as.factor(df$explicit)
summary (df)

https://www.kaggle.com/datasets/estienneggx/spotify-unpopular-songs

danceability energy key loudness

Min. :0.0000 Min. :0.0000203 Min. 0.000 Min. :-51.808
1st Qu.:0.4420 1st Qu.:0.3790000 1st Qu.: 2.000 1st Qu.:-13.796
Median :0.6020 Median :0.5690000 Median : 5.000 Median : -9.450
Mean :0.5725 Mean :0.5497713 Mean : 5.223 Mean :-11.359
3rd Qu.:0.7300 3rd Qu.:0.7450000 3rd Qu.: 9.000 3rd Qu.: -6.726
Max. :10.9860 Max . 1.0000000 Max. :11.000 Max. H 3.108
#it mode speechiness acousticness instrumentalness

Min. .000 Min. :10.0000 Min. .0000 Min. :10.000000
1st Qu.:0.000 1st Qu.:0.0384 1st Qu.:0.8365 1st Qu.:0.000000

Median .000 Median :0.0589 Median .2330 Median :0.000133
Mean .641 Mean :0.1380 Mean 03542 Mean :0.232943

3rd Qu.:1.000 3rd Qu.:0.1880 3rd Qu.:0.6570 3rd Qu.:0.517000

Max. :1.000 Max. :0.9620 Max. :0.9960 Max. :1.000000
#it liveness valence tempo duration_ms

Min. :0.0000 Min. :0.0000 Min. : ©.0 Min. : 4693

1st Qu.:0.0993 1st Qu.:0.2380 1st Qu.: 93.@ 1st Qu.: 151152

Median :0.1290 Median :0.4680 Median :117.1 Median : 197522

Mean .2121 Mean :0.4646 Mean :117.8 Mean : 205578

3rd Qu .2680 3rd Qu.:0.6850 3rd Qu.:138.9 3rd Qu.: 244428

Max. 9990 Max. ©.9950 Max. :239.5 Max. :3637277

explicit popularity track_name track_artist

False:7945 Min. : 0.000 Length:10877 Length:10877

True :2932 1st Qu.: 1.800 Class :character Class :character

Median : 2.00@ Mode :character Mode :character

#it Mean : 3.079

3rd Qu.: 3.000

#it Max. :18.000

track_id

Length:10877
Class :character
Mode :character

cor(df[c(1,2,3,4,5,6,7,8,9,10,11,12,14)])

#H danceability energy key loudness

danceability 1.0000000000 ©.10357554 ©.001416440 ©0.384798006

energy ©.1035755370 1.00000000 ©.032847557 ©.668247944

key ©.0014164396 ©.03284756 1.000000000 ©0.020238291

loudness ©.3847980060 ©.66824794 ©.020238291 1.000000000

mode -0.0424166570 -0.04371262 -0.174170158 ©.007144594

speechiness ©.2880560637 ©.06065882 -0.003339108 0.067091927

acousticness -0.2537596673 -0.57807060 -0.017360855 -0.491999477

instrumentalness -0.3345776576 -0.31475687 -0.026367389 -0.547322987

liveness -0.2502105046 ©.25837921 -0.001745424 -0.018978820

valence 0.5171426279 ©.31726610 ©.015964344 0.426772633

tempo 0.0900580502 ©.17122835 -0.003040262 ©.202227504

duration_ms ©.0004830046 ©.15201424 ©.006044278 ©.195281479

popularity ©.1597255536 ©.05469420 -0.002388392 ©.149949613

#H mode speechiness acousticness instrumentalness
danceability -0.0424166570 ©.288056064 -0.25375967 -0.334577658
energy -0.0437126214 ©.060658817 -0.57807060 -0.314756871
key -0.1741701578 -0.003339108 -0.01736086 -0.026367389
loudness 0.0071445943 ©.067091927 -0.49199948 -0.547322987
mode 1.0000000000 -0.087636772 ©.03888040 -0.063920945
speechiness -0.0876367717 1.000000000 -0.11592434 -0.273849185
acousticness ©.0388803990 -0.115924341 1.00000000 ©.291033539
instrumentalness -0.0639209452 -0.273849185 ©.29103354 1.000000000
liveness -0.0241449112 ©.050249663 -0.02456814 -0.008284127
valence 0.0002389504 ©.115257854 -0.21538759 -0.335547352
tempo ©.0171224145 ©.038543375 -0.18312285 -0.119385544
duration_ms ©.0351389868 -0.098355503 -0.11730165 -0.148671815
popularity -0.0454684641 ©.050489909 -0.11698471 -0.075279942
#H liveness valence tempo duration_ms

danceability -0.250210565 ©.5171426279 ©.090058050 ©0.0004830046

energy ©.258379213 ©.3172660977 ©.171228345 ©.1520142437

key -0.001745424 0.0159643436 -0.003040262 ©0.0060442781

loudness -0.018978820 ©.4267726333 ©0.202227504 ©.1952814794

mode -0.024144911 0.0002389504 ©.017122414 ©.0351389868

speechiness ©.050249663 ©.1152578541 ©.038543375 -0.0983555028

acousticness -0.024568144 -0.2153875874 -0.183122846 -0.1173016518

instrumentalness -0.008284127 -0.3355473521 -0.119385544 -0.1486718149

liveness 1.000000000 -0.1129996078 -0.029490757 ©.0683864612

valence -0.1129996068 1.0000000000 ©.172984416 ©0.0460316403

tempo -0.029490757 ©.1729844162 1.000000000 ©0.0509919444

duration_ms ©.068386461 ©0.0460316403 ©.050991944 1.0000000000

popularity -0.066955096 ©.0358241022 ©.061602311 -0.0250484441

#H popularity

danceability 0.159725554

energy 0.054694203

key -0.002388392

loudness 0.149949613

mode -0.045468464

speechiness 0.050489909

acousticness -0.116984708

instrumentalness -0.075279942

liveness -0.066955096

valence 0.035824102

tempo 0.061602311

duration_ms -0.025048444

popularity 1.000000000

dfgpopularity <- as.factor(df$popularity)

We don’t see a ton of clearly related values, though how many attributes we have does make it difficult to read. We’'ll hope
that the algorithms will do well at reducing the amount of attributes we have entering into this data.

Let’s take a closer look at popularity, now that its factored.

summary (df$popularity)

#H 2] 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15
2694 2101 2146 1494 457 309 212 137 112 59 80 45 59 248 544 152
16 17 18
19 5 4

Hmm, a few too many factors. Let’'s combine some of these with respect to how many are in each category.

#install.packages("forcats")

library(forcats)

popularityclass <- fct_collapse(df$popularity, horrible=c('@','1'), bad=c('2','3
meh=c('6','7',"8','9","'10","11",'12"), passable=c('13','14','15"','16",'17

4','5"),

dfgpopclass <- popularityclass

And now we'll be sure it worked.

summary (df$popclass)

horrible bad meh passable

4795 4406 704 972

names (df)

[1] "danceability" "energy"” "key" loudness”

[5] "mode” "speechiness"” "acousticness” nstrumentalness”
[9] "liveness"” "valence" "tempo" "duration_ms"

[13] "explicit” "popularity" "track_name" "track_artist”

[17] "track_id" "popclass”

Cheers! Let’s separate it into training data now.

i <- sample(1:nrow(df),nrow(df)*.8,replace=FALSE)
train <- df[i,]
test <- df[-i,]

VISUAL EXPLORATION

Now, let’s look at some charts to understand things a bit better.

pairs(df[c(3,4,6,8,9,11)])

key B
o
Q loudness '
o o
3 a
o "
9 speechiness
o
©
© instrumentalness
=
o
liveness
3
- tempo
o
0 4 8 00 04 08

plot(density(df$loudness),lwd=2)

0.0 06

00 06

density.default(x = df$loudness)

Density
0.06 0.08
| |

0.04
|

0.02
|

0.00
|

plot(density(df$valence),lwd=2)

N = 10877 Bandwidth =0.74

density.default(x = df$valence)

Density
08 10 1.2

04
|

0.0

plot(density(df$tempo),lud=2)

0.2 0.4 0.6 0.8

N = 10877 Bandwidth = 0.03831

1.0

density.default(x = df$tempo)

0.012
|

Density
0.008
|

0.004

0.000
|
\

I I I I I I
0 50 100 150 200 250

N = 10877 Bandwidth =4.375

plot(density(df$speechiness),lud=2)

density.default(x = df$speechiness)

Density

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

N = 10877 Bandwidth = 0.01566

We confirm that key, liveliness, and tempo are not very useful. We can now better understand how the data is laid out, and
confirmed that correlation is difficult to find. This is why we will be using a kNN model to test dimensionality on this data.

DIMENSIONALITY ALGORITHMS

Okay, now let's run PCA on the data. We have a lot of columns to consider. We'll center and scale them while we're at it.

set.seed(2022)
pca_out <- preProcess(train[,1:10], method=c("center”,"scale","pca"),k=5)

pca_out

Created from 8701 samples and 1@ variables

#it
Pre-processing:

- centered (10)

- ignored (@)

- principal component signal extraction (1)
- scaled (10)

#it

PCA needed 9 components to capture 95 percent of the variance

We weren’t able to remove much.

Let’s plot what we got. We'll put them on 3 separate 3d charts.
train_pc <- predict(pca_out,train[,1:10])
test_pc <- predict(pca_out, test[,1:10])

#install.packages("plotly")
library(plotly)

#it
Attaching package: 'plotly’

The following object is masked from 'package:ggplot2':

last_plot

The following object is masked from ‘package:stats':

filter

The following object is masked from 'package:graphics':

layout

plot_ly(x=test_pc$PCl, y=test_pc$PC2, z=test_pc$PC3, type="scatter3d”, mode="markers",color=test$popclass)

horrible
bad

meh
passable

plot_ly(x=test_pc$PC4, y=test_pc$PC5, z=test_pc$PC6, type="scatter3d”, mode="markers",color=test$popclass)

horrible
bad

meh
passable

plot_ly(x=test_pc$PC7, y=test_pc$PC8, z=test_pc$PC9, type="scatter3d", mode="markers",color=test$popclass)

horrible
bad
meh

I |
. M | | passable

Things are not looking promising. We can hope that since it wasn't able to reduce much, though, that using all the predictors
it created will help more, even if we can't visualize it.
Let's try kNN on it.
library(class)
train_df <-
data.frame(train_pc$PC1,train_pc$PC2,train_pc$PC3,train_pc$PC4,train_pc$PC5,train_pc$PC6,train_pc$PC7,train_pc$PCs,t
train$popclass)
test_df <-
data.frame(test_pc$PCl,test_pc$PC2,test_pc$PC3,test_pc$PC4,test_pc$PCS5,test_pc$PC6,test_pc$PC7,test_pc$PC8,t

est_pc$PC9, test$popclass)

predknn <- knn(train=train_df[,1:9], test=test_df[,1:9], cl=train_df[,10], k=5)
mean(predknn==test$popclass)

[1] 0.4852941

confusionMatrix(data=predknn, reference=test$popclass)

Confusion Matrix and Statistics

##

Reference

Prediction horrible bad meh passable

horrible 544 368 54 76

#4# bad 348 498 62 89

meh 18 14 5 6

passable 33 44 8 9

##

Overall Statistics

##

Accuracy : ©.4853

#H 95% CI : (©.4641, ©.5065)

No Information Rate : 0.4334

P-Value [Acc > NIR] : 6.192e-07

##

#4 Kappa : ©.1323

##

Mcnemar's Test P-Value : 1.880e-15

##

Statistics by Class:

##

#4# Class: horrible Class: bad Class: meh Class: passable
Sensitivity 0.5769 0.5390 0.038760 ©.050000
Specificity ©0.5961 0.6014 0.981436 ©.957415
Pos Pred Value 0.5221 0.4995 0.116279 ©.095745
Neg Pred Value 0.6481 0.6387 ©0.941866 ©.917867
Prevalence 0.4334 0.4246 ©.059283 0.082721
Detection Rate 0.2500 0.2289 0.002298 ©.004136
Detection Prevalence 0.4789 0.4582 0.019761 ©.043199
Balanced Accuracy 0.5865 0.5702 0.510098 ©0.503707

Well, this doesn’t seem like it was too helpful. We have a less than 50% chance of getting our classification correct, even
we're looking at our larger trained classes. This well may be simply due to poor correlation in data, however. We weren’t
even able to reduce the data much. On another data set, PCA may be more beneficial.

LINEAR DISCRIMINANT ANALYSIS

Let's see if LDA works better for our data set. However, we know well that out data is not linear, so hopes are low.

library(MASS)

##
Attaching package: 'MASS'

The following object is masked from 'package:plotly':
##
#4# select

ldapop <- MASS::lda(x=train[,1:12],grouping=train$popclass, data=train)
#1ldapop <- lda(train$popclass~., data=train)
ldapop$means

danceability energy key loudness mode speechiness

horrible ©.5440875 ©.5471038 5.318536 -12.428731 0.6542056 0.1432161
bad ©.5804911 ©.5367301 5.237507 -10.940616 0.6496267 0.1228314
meh ©.6071285 0.6039334 4.968696 -9.113452 0.6626087 0.1495861
passable ©.6549184 0.5773484 5.305556 -9.391605 0.5429293 0.1741463
acousticness instrumentalness liveness valence tempo duration_ms
horrible 9.3897951 ©.2513320 0.2324003 0.4443876 116.4034 202060.6
bad 0.3471737 ©.2352933 ©.1956088 0.4788491 118.2083 212001.6
meh 0.2722616 ©.1311003 ©.2015706 ©.4814607 122.3585 218305.2
passable 0.2690076 0.1862304 ©.1900961 0.4776485 120.6720 181039.0

Means were found well, and everything looks good. We have to break it up for the sake of Plotly syntax, as it seemed to have
some confusion due to commas in predictor names. PCA was strictly dimension reduction, but LDA also predicts, so we won't
be using kNN this time.

1da_pred <- predict(ldapop,newdata=test[,1:12],type="class")
head(lda_pred$class)

[1] horrible bad bad horrible bad bad
Levels: horrible bad meh passable

#lda_train <- predict(ldapop,data=train,type="class")

We know the majority of our data is in the ‘bad’ or 'horrible’ range, so all looks good here.
Now, let’s plot it!
library(plotly)

plot(lda_pred$x[,1], lda_pred$x[,3], pch=c(16,17,18,15)[unclass(test_pc$popclass)],
col=c("red","orange","yellow","green")[unclass(test$popclass)])

o o
Y o
<
S
o Q- o
o

|

©
k]

o

o |

|

o

-10 -8 -6 -4 -2 0 2

Ida_pred$x[, 1]

xaxis <- lda_pred$x[,1]
yaxis <- lda_pred$x[,2]
zaxis <- lda_pred$x[,3]
target<- test$popclass
plot_ly(x=xaxis,y=yaxis,z=zaxis,type="scatter3d",mode="markers",color=target)

horrible
bad

meh
passable

Things are not looking promising. It looks largely the same as any of our charts from principal components, even though we
were able to chart all the attributes that were produced to see a visible appearance in one go this time.

We now can check our confusion matrix and look into how well we actually managed to predict data.

library(class)
mean(lda_pred$class==test$popclass)

[1] 0.4779412

confusionMatrix(data=lda_pred$class, reference=test$popclass)

Confusion Matrix and Statistics

##

#h Reference

Prediction horrible bad meh passable

horrible 551 435 68 83

bad 392 489 61 97

meh]]]]

passable e o o 0

#it

Overall Statistics

##

Accuracy : ©.4779

#i# 95% CI : (©.4568, ©.4992)

#h No Information Rate : ©.4334

P-Value [Acc > NIR] : 1.58e-05

#h

#i Kappa : ©.0854

#h

Mcnemar's Test P-Value : NA

#H

Statistics by Class:

##

Class: horrible Class: bad Class: meh Class: passable
Sensitivity 0.5843 0.5292 0.00000 0.00000
Specificity 0.5247 0.5607 1.00000 1.00000
Pos Pred Value 0.4846 0.4706 NaN NaN
Neg Pred Value 0.6227 0.6174 0.94072 0.91728
Prevalence 0.4334 0.4246 0.05928 0.08272
Detection Rate 0.2532 0.2247 ©.00000 ©.00000
Detection Prevalence 0.5225 0.4775 0.00000 0.00000
Balanced Accuracy 0.5545 0.5450 0.50000 0.50000

The model entirely failed for ‘okay’ and ‘passable’ songs, which is not surprising considering our model visualization. It did
slightly better than PCA with kNN, however. We are effectively worse than a coin flip, made worse only by there being 4
potential classes to choose from.

CONCLUSION AND ANALYSIS

We chose this data since it being advertised for clustering made it seem like it would be good for kNN as well, and that the
reduction would help simplify the large number of attributes. However, after interacting with it, this expectation was folly on
our part. There is more that goes into making a dataset good for kNN. Thinking about the nature of our data, of bad songs on
Spotify, we can also conclude that there isn't a ton of trend with what makes a song “bad”. Perhaps from this data a genre
may be able to be found via clustering, but popularity isn't an equation of things such as tempo, energy, instruments, or
anything else. Sometimes a song is just bad for content or other reasons. When it came down to it, PCA+kNN and LDA
effectively made a coin flip then rated a song as ‘bad’ or ‘horrible’. While the PCA attempt was able to occasionally succeed
for the smaller classes, LDA may well have been more accurate due to the fact that it stuck to the larger classes and did not
try to sort anything into the smaller classes. Since the values were so scattered, increasing the amount of data likely would
not have helped significantly. The reality of it is that there is not much correlation, and that we have learned that PCA nor
LDA is able to find or create correlation where there is none.

1. Aarushi’s Portfolio (https:/github.com/Aarushi-Pandey/Portfolio_ML)[E]l

2. Brandon’s Portfolio (https://github.com/Unicoranium/CS4375)E]

3. Zaiquiri's Portfolio (https://zaiquiriw.github.io/ml-portfolio/) Bl

4. Gray's Porfolio (https://ecclysium.github.io/Machinelearning_Portfolio/) Bl

https://github.com/Aarushi-Pandey/Portfolio_ML
https://github.com/Unicoranium/CS4375
https://zaiquiriw.github.io/ml-portfolio/
https://ecclysium.github.io/MachineLearning_Portfolio/

