What is Our Data?

Exploring Our Data

Initial Processing

Visual Exploration

Dimensionality Algorithms

Linear Discriminant Analysis

Conclusion and Analysis

DIMENSIONALITY

AARUSHI PANDEY ¹ BRANDON RUNYON ² ZACHARY CANOOT ³ GRAY SIMPSON ⁴ 09 OCTOBER, 2022

WHAT IS OUR DATA?

Using the dataset Spotify Unpopular Songs (https://www.kagqle.com/datasets/estienneggx/spotify-unpopular-songs). It contains audio characteristics of many unpopular songs such as perceived intensity, key, decibels, popularity, and more.

Here, we're going to attempt to see if we can manage to find a way to sort songs into general classes (horrible, bad, meh, and passable) based off their popularity scores.

EXPLORING OUR DATA

INITIAL PROCESSING

In this notebook, we will be performing dimensionality reduction to attempt to improve performance and accuracy in kNN regression.

Let's read in the data and take a peek.

```
## Loading required package: ggplot2

## Loading required package: lattice

df <- read.csv("data/unpopular_songs.csv")
summary(df)
```

```
energy key loudness
Min. :0.0000203 Min. :0.000 Min. :-51.808
1st Qu.:0.3790000 Ist Qu.: 2.000 Ist Qu.:-13.796
Median :0.5690000 Median : 5.000 Median :-9.450
Mean :0.5497713 Mean :5.223 Mean :-11.359
3rd Qu.:0.7450000 3rd Qu.: 9.000 3rd Qu.:-2.10.800
    ## danceability
## Min. :0.0000
## 1st Qu.:0.4420
                                                                                                                           Median :0.5690000
Mean :0.5497713
3rd Qu.:0.7450000
Max. :1.0000000
                        Median :0.6020
                       Mean :0.5725
3rd Qu.:0.7300
                                                                                                                                                                                                                                                                                                                                                      Mean :-11.359
3rd Qu.: -6.726
Max. : 3.108
 ## Max. :1.0.9860 Max. :1.0.9860 Max. :1.0.9860 ## Lo.0.9860 Max. :1.0.9860 ## Lo.0.9860 Max. :1.0.9860 ## Ist Qu.:0.0984 Ist Qu.:0.0986 ## Modian :1.000 Modian :0.0889 Modian :0.2330 ## Modian :0.641 Moan :0.1380 Moan :0.3542 ## 3rd Qu.:1.000 3rd Qu.:0.1880 3rd Qu.:0.6570
                                                                                                                                                                                                                                                                                                                            00 Max. : 3.
instrumentalness
                                                                                                                                                                                                                                                                                           :11.000
                                                                                                                                                                                                                                                                                                                             Min. :0.000000
1st Qu.:0.000000
                                                                                                                                                                                                                                                                                                                             Median :0.000133
Mean :0.232943
3rd Qu.:0.517000
 :1.000000
                                                                                                                                                                                                                                                                         ::138.9 314 :
:239.5 Max. :3637277
track_artist
                                                                                                                         Max. :0.9956
popularity
: 0.00
                                                                                                                                                                                                                               Max. :239.5
track_name
   ## Max. :0.
## explicit
                                                                   :0.9990
                                                                                                                                                                      :0.9950
## Class :character ## Mode :character ## Mode :character ## Rean | 3.079 | 3.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.079 | 4.
## track_id
## Length:10877
## Class :character
## Mode :character
   ##
```

We can see we largely have quantitative data, with a few exceptions. Not all of these are useful, but we'll make whether or not its explicit a factor for now, as well as popularity (after we look at correlation). We'll also look for correlated values.

```
df$explicit <- as.factor(df$explicit)
summary(df)</pre>
```

```
danceability
                              energy
Min. :0.0000203
1st Qu.:0.3790000
                                                                 key
: 0.000
                                                                                       loudness
                                                          Min. : 0.000
1st Qu.: 2.000
Median : 5.000
                                                                                  Min. :-51.808
1st Qu.:-13.796
Median : -9.450
       Min. :0.0000
 ##
       Median :0.6020
                               Median :0.5690000
 ##
       Mean
                :0.5725
                              Mean
                                        :0.5497713
                                                           Mean : 5.223
3rd Qu.: 9.000
                                                                                  Mean :-11.359
:0
srd Qu.:0
## Max. :0.
## mode
## Min. :0
       3rd Ou.:0.7300
                               3rd Qu.:0.7450000
                                                                                   3rd Ou.: -6.726
                 :0.9860
                                         :1.0000000
                                                      0 Max. :13
                                                                    :11.000
                                                                            00 Max. : 3.
instrumentalness
                               speechiness
                             Min. :0.0000
1st Qu.:0.0384
Median :0.0589
                                                     Min. :0.0000
1st Qu.:0.0365
Median :0.2330
                                                                            Min. :0.000000
1st Qu.:0.000000
                : 0.000
      Min. :0.000
1st Qu.:0.000
Median :1.000
Mean :0.641
                                                                             Median :0.000133
 ##
                             Mean :0.1380
                                                     Mean :0.3542
                                                                             Mean :0.232943
       3rd Qu.:1.000
Max. :1.000
                             3rd Qu.:0.1880
Max. :0.9620
                                                     3rd Qu.:0.6570
                                                                             3rd Qu.:0.517000
                             Max. :0.96
valence
                                                     Max. :0.9960
tempo
Min. : 0.0
                                                                                       :1.000000
       Max. :1.00
                                                                              duration_ms
 ## l
                              Min. :0.0000
1st Qu.:0.2380
                                                                             Min. : 4693
1st Qu.: 151152
                                                                                            4693
                . 0 0000
                                                      Min. : 0.0
1st Qu.: 93.0
       Median :0.1290
                              Median :0.4680
                                                      Median :117.1
                                                                             Median : 197522
       Mean :0.2121
3rd Qu.:0.2680
                              Mean :0.4646
3rd Qu.:0.6850
                                                      Mean :117.8
3rd Qu.:138.9
                                                                             Mean : 205578
3rd Qu.: 244428
 ##
      Max.
                 :0.9990
                              Max.
                                        :0.9950
                                                      Max.
                                                                :239.5
                                                                             Max.
                                                                                       :3637277
                            popularity
                                                                           track artist
        explicit
 ##
                                                  track name
                                                 Length:10877
       False: 7945
True : 2932
                         Min. : 0.000
1st Qu.: 1.000
                                                                            Length:10877
                                                 Class :character
                                                                           Class :character
                         Median : 2.000
Mean : 3.079
 ##
                                                 Mode :character
                                                                           Mode :character
                         3rd Qu.: 3.000
 ##
                         Max.
                                   :18.000
       track_id
Length:10877
 ##
       Class :character
Mode :character
 ##
```

```
cor(df[c(1,2,3,4,5,6,7,8,9,10,11,12,14)])
```

```
danceability energy key loudness 1.0000000000 0.10357554 0.001416440 0.384798006
                                                                                  loudness
## danceability
## energy
                                                             0.032847557
                           0.1035755370 1.00000000
                                                                              0.668247944
## key
## loudness
                           0 0014164396 0 03284756
                                                             1 000000000
                                                                              0 020238291
                            0.3847980060
                                             0.66824794
                                                              0.020238291
                           -0.0424166570
                                             -0.04371262 -0.174170158
                                                                              0.007144594
## mode
## speechiness
## acousticness
                           0.2880560637
-0.2537596673
                                             0.06065882 -0.003339108 0.067091927
-0.57807060 -0.017360855 -0.491999477
## instrumentalness
                           -0.3345776576 -0.31475687
                                                             -0.026367389
                                                                             -0.547322987
## liveness
                           -0.2502105046
                                             0.25837921 -0.001745424 -0.018978820
## valence
## tempo
                           0.5171426279
0.0900580502
                                             0.31726610 0.015964344
0.17122835 -0.003040262
                                                                              0.426772633
## duration ms
                           0.0004830046
                                             0.15201424 0.006044278
0.05469420 -0.002388392
                                                                              0.195281479
## popularity
                           0.1597255536
                                             speechiness acousticness
                          mode speechiness
-0.0424166570 0.288056064
                                                                              instrumentalness
## danceability
                                                              -0.25375967
                                                                                   -0.334577658
## energy
## key
## loudness
                          -0.0437126214
-0.1741701578
                                             0.060658817
-0.003339108
                                                               -0.57807060
-0.01736086
                                                                                    -0.314756871
-0.026367389
                           0.0071445943
                                             0.067091927
                                                               -0.49199948
                                                                                    -0.547322987
## mode
                           1.0000000000
                                             -0.087636772
                                                                0.03888040
                                                                                    -0.063920945
## speechiness
## acousticness
                           0.0876367717
                                             1.000000000
                                                                0.11592434
                                                                                    -0.273849185
0.291033539
## instrumentalness
                          -0.0639209452 -0.273849185
                                                                0.29103354
                                                                                     1.000000000
## liveness
                           -0.0241449112
                                             0.050249663
                                                                -0.02456814
                                                                                     0.008284127
                           0.0002389504
                                             0.115257854
                                                               -0.21538759
## valence
                                                                                    -0.335547352
## tempo
                           0.0171224145
                                             0.038543375
                                                               -0.18312285
                                                                                    -0.119385544
## duration_ms
## popularity
                            0.0351389868
                                             -0.098355503
                                                               -0.11730165
                                                                                    -0.148671815
                          -0.0454684641 0.050489909
                                                               -0.11/30103
                                                                                     0.075279942
                          liveness valence tempo -0.250210505 0.5171426279 0.090058050
                                                                                 duration ms
## danceability
                                                                                0.0004830046
                          0.258379213 0.3172660977 0.171228345
-0.001745424 0.0159643436 -0.003040262
## energy
## key
                                                                               0.1520142437
0.0060442781
## loudness
## mode
                          -0.018978820 0.4267726333 0.202227504
-0.024144911 0.0002389504 0.017122414
                                                                               0.1952814794
0.0351389868
## speechiness
                           0.050249663
                                            0.1152578541
                                                              0.038543375
                                                                                0.0983555028
## acoustioness
                           -0.024568144 -0.2153875874 -0.183122846
                                                                              -0.1173016518
## instrumentalness
## liveness
                           -0.008284127 -0.3355473521 -0.119385544
1.000000000 -0.1129996078 -0.029490757
                                                                               -0.1173010318
-0.1486718149
0.0683864612
## valence
                          -0.112999608 1.0000000000
-0.029490757 0.1729844162
                                                              0.172984416
                                                                               0.0460316403
0.0509919444
                                                               1.000000000
## duration_ms
## popularity
                           0.068386461
                                                               0.050991944
                                            0.0460316403 0.050991944 1.0000000000
0.0358241022 0.061602311 -0.0250484441
                          -0.066955096
                            popularity
0.159725554
## danceability
## energy
                           0.054694203
## key
## loudness
                           -0.002388392
## mode
                           0.045468464
## speechiness
## acousticness
                           0 050489909
                            0.116984708
## instrumentalness -0.075279942
## liveness
                           -0.066955096
## valence
## tempo
                           0.035824102
                            0.061602311
## duration ms
                           -0.025048444
## popularity
                           1.000000000
```

```
df$popularity <- as.factor(df$popularity)
```

We don't see a ton of clearly related values, though how many attributes we have does make it difficult to read. We'll hope that the algorithms will do well at reducing the amount of attributes we have entering into this data.

Let's take a closer look at popularity, now that its factored.

```
summary(df$popularity)

## 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

## 2694 2101 2146 1494 457 309 212 137 112 59 80 45 59 248 544 152

## 16 17 18

## 19 5 4
```

Hmm, a few too many factors. Let's combine some of these with respect to how many are in each category.

```
#install.packages("forcats")
library(forcats)
popularityclass <- fct_collapse(df$popularity, horrible=c('0','1'), bad=c('2','3','4','5'),
    meh=c('6','7','8','9','10','11','12'), passable=c('13','14','15','16','17','18'))
df$popclass <- popularityclass</pre>
```

And now we'll be sure it worked.

```
summary(df$popclass)
```

## h	orrible	bad	meh pa	ssable
##	4795	4406	704	972

names(df)

```
## [1] "danceability" "energy" "key" "loudness"

## [5] "mode" "speechiness" "acousticness" "instrumentalness"

## [9] "liveness" "valence" "tempo" "duration_ms"

## [13] "explicit" "popularity" "track_name" "track_artist"

## [17] "track_id" "popclass"
```

Cheers! Let's separate it into training data now.

```
i <- sample(1:nrow(df),nrow(df)*.8,replace=FALSE)
train <- df[i,]
test <- df[-i,]</pre>
```

VISUAL EXPLORATION

Now, let's look at some charts to understand things a bit better.

```
pairs(df[c(3,4,6,8,9,11)])
```


plot(density(df\$loudness),lwd=2)

density.default(x = df\$loudness)

plot(density(df\$valence),lwd=2)

density.default(x = df\$valence)

plot(density(df\$tempo),lwd=2)

density.default(x = df\$tempo)

plot(density(df\$speechiness),lwd=2)

density.default(x = df\$speechiness)

We confirm that key, liveliness, and tempo are not very useful. We can now better understand how the data is laid out, and confirmed that correlation is difficult to find. This is why we will be using a kNN model to test dimensionality on this data.

DIMENSIONALITY ALGORITHMS

Okay, now let's run PCA on the data. We have a lot of columns to consider. We'll center and scale them while we're at it.

```
set.seed(2022)
pca_out <- preProcess(train[,1:10], method=c("center","scale","pca"),k=5)
pca_out
```

```
## Created from 8701 samples and 10 variables
##
## Pre-processing:
## - centered (10)
## - ignored (0)
## - principal component signal extraction (10)
## - scaled (10)
##
## PCA needed 9 components to capture 95 percent of the variance
```

We weren't able to remove much.

Let's plot what we got. We'll put them on 3 separate 3d charts.

```
train_pc <- predict(pca_out,train[,1:10])
test_pc <- predict(pca_out, test[,1:10])
#install.packages("plotly")
library(plotly)</pre>
```

```
## Attaching package: 'plotly'

## The following object is masked from 'package:ggplot2':
##
## last_plot

## The following object is masked from 'package:stats':
##
## filter

## The following object is masked from 'package:graphics':
##
## layout
```

plot_ly(x=test_pc\$PC1, y=test_pc\$PC2, z=test_pc\$PC3, type="scatter3d", mode="markers",color=test\$popclass)

plot_ly(x=test_pc\$PC4, y=test_pc\$PC5, z=test_pc\$PC6, type="scatter3d", mode="markers",color=test\$popclass)

 $\verb|plot_ly(x=test_pc$PC7, y=test_pc$PC8, z=test_pc$PC9, type="scatter3d", mode="markers", color=test$popclass)|$

Things are not looking promising. We can hope that since it wasn't able to reduce much, though, that using all the predictors it created will help more, even if we can't visualize it.

Let's try kNN on it.

```
## [1] 0.4852941
```

```
confusionMatrix(data=predknn, reference=test$popclass)
```

```
## Confusion Matrix and Statistics
## Reference
## Prediction horrible bad meh passable
##
      horrible
bad
                          544 368 54
348 498 62
##
      meh
                           18 14 5
33 44 8
     passable
## Overall Statistics
##
      Accuracy: 0.4853
95% CI: (0.4641, 0.5065)
No Information Rate: 0.4334
P-Value [Acc > NIR]: 6.192e-07
##
                             Kappa : 0.1323
## Mcnemar's Test P-Value : 1.880e-15
## Statistics by Class:
                                Class: horrible Class: bad Class: meh Class: passable
                                                             0.5390
0.6014
0.4995
## Sensitivity
                                             0.5769
0.5961
                                                                        0.038760
0.981436
                                                                                                0.050000
## Specificity
## Pos Pred Value
                                              0.5221
                                                                          0.116279
                                                                                                0.095745
## Neg Pred Value
## Prevalence
## Detection Rate
## Detection Prevalence
                                             0.6481
0.4334
0.2500
                                                                                                0.917867
0.082721
0.004136
                                                             0.6387
0.4246
                                                                         0.941866
0.059283
                                                                         0.002298
                                                             0.2289
                                             0.4789
                                                             0.4582
                                                                         0.019761
                                                                                                0.043199
                                             0.5865
                                                             0.5702
                                                                         0.510098
```

Well, this doesn't seem like it was too helpful. We have a less than 50% chance of getting our classification correct, even we're looking at our larger trained classes. This well may be simply due to poor correlation in data, however. We weren't even able to reduce the data much. On another data set, PCA may be more beneficial.

LINEAR DISCRIMINANT ANALYSIS

Let's see if LDA works better for our data set. However, we know well that out data is not linear, so hopes are low.

```
## ## Attaching package: 'MASS'

## The following object is masked from 'package:plotly':
##
## select

| Idapop <- MASS::Ida(x=train[,1:12],grouping=train$popclass, data=train)
#Idapop <- Ida(train$popclass-., data=train)
| Idapop %means
```

```
## danceability energy key loudness mode speechiness
## horrible 0.5440875 0.5471038 5.318536 -12.428731 0.6542056 0.1432161
## bad 0.5804911 0.5367301 5.237507 -10.940616 0.6496267 0.1228314
## meh 0.6071285 0.6039334 4.96866 0-9.113452 0.6626087 0.1495861
## passable 0.6549184 0.5773484 5.305556 -9.391605 0.5429293 0.1741463
## horrible 0.3897951 0.2513320 0.2324003 0.4443876 116.4034 202060.6
## bad 0.3471737 0.2352933 0.1956088 0.4788491 118.2083 212001.6
## meh 0.2722616 0.1311003 0.2015706 0.4814607 122.3585 21836.5
## passable 0.2690076 0.1862304 0.1900961 0.4776485 120.6720 181039.0
```

Means were found well, and everything looks good. We have to break it up for the sake of Plotly syntax, as it seemed to have some confusion due to commas in predictor names. PCA was strictly dimension reduction, but LDA also predicts, so we won't be using kNN this time.

```
lda_pred <- predict(ldapop,newdata=test[,1:12],type="class")
head(lda_pred$class)</pre>
```

```
## [1] horrible bad bad horrible bad bad
## Levels: horrible bad meh passable
```

```
#lda_train <- predict(ldapop,data=train,type="class")
```

We know the majority of our data is in the 'bad' or 'horrible' range, so all looks good here.

Now, let's plot it!

```
library(plotly)
plot(lda_pred$x[,1], lda_pred$x[,3], pch=c(16,17,18,15)[unclass(test_pc$popclass)],
col=c("red","orange","yellow","green")[unclass(test$popclass)])
```



```
xaxis <- lda_pred$x[,1]
yaxis <- lda_pred$x[,2]
zaxis <- lda_pred$x[,3]
target<- test$popclass
plot_ly(x=xaxis,y=yaxis,z=zaxis,type="scatter3d",mode="markers",color=target)</pre>
```


Things are not looking promising. It looks largely the same as any of our charts from principal components, even though we were able to chart all the attributes that were produced to see a visible appearance in one go this time.

We now can check our confusion matrix and look into how well we actually managed to predict data.

```
library(class)
mean(lda_pred$class==test$popclass)

## [1] 0.4779412
```

```
confusionMatrix(data=lda_pred$class, reference=test$popclass)
```

```
## Confusion Matrix and Statistics
##
                 Reference
## Prediction horrible bad meh passable
## horrible 551 435 68 83
## bad 392 489 61 97
      moh
     passable
## Overall Statistics
     Accuracy : 0.4779
95% CI : (0.4568, 0.4992)
No Information Rate : 0.4334
P-Value [Acc > NIR] : 1.58e-05
##
##
##
                            Kappa : 0.0854
##
## Mcnemar's Test P-Value : NA
                                Class: horrible Class: bad Class: meh Class: passable
## Sensitivity
## Specificity
                                                            0.5292
0.5607
                                             0.5843
0.5247
                                                                       0.00000
                                                                                                1.00000
## Pos Pred Value
## Neg Pred Value
                                             0.4846
                                                             0.4706
                                                                               NaN
                                                                                                      NaN
                                                                          0.94072
                                              0.6227
                                                             0.6174
                                                                                                 0.91728
## Prevalence
## Detection Rate
                                             0.4334
                                                             0.4246
                                                                          0.05928
                                                                                                 0.08272
                                             0.2532
                                                             9.2247
## Detection Prevalence
## Balanced Accuracy
                                             0.5225
0.5545
                                                            0.4775
0.5450
                                                                           0.00000
                                                                                                 0.00000
                                                                          0.50000
                                                                                                 0.50000
```

The model entirely failed for 'okay' and 'passable' songs, which is not surprising considering our model visualization. It did slightly better than PCA with kNN, however. We are effectively worse than a coin flip, made worse only by there being 4 potential classes to choose from.

CONCLUSION AND ANALYSIS

We chose this data since it being advertised for clustering made it seem like it would be good for kNN as well, and that the reduction would help simplify the large number of attributes. However, after interacting with it, this expectation was folly on our part. There is more that goes into making a dataset good for kNN. Thinking about the nature of our data, of bad songs on Spotify, we can also conclude that there isn't a ton of trend with what makes a song "bad". Perhaps from this data a genre may be able to be found via clustering, but popularity isn't an equation of things such as tempo, energy, instruments, or anything else. Sometimes a song is just bad for content or other reasons. When it came down to it, PCA+kNN and LDA effectively made a coin flip then rated a song as "bad" or "horrible". While the PCA attempt was able to occasionally succeed for the smaller classes, LDA may well have been more accurate due to the fact that it stuck to the larger classes and did not try to sort anything into the smaller classes. Since the values were so scattered, increasing the amount of data likely would not have helped significantly. The reality of it is that there is not much correlation, and that we have learned that PCA nor LDA is able to find or create correlation where there is none.

- 1. Aarushi's Portfolio (https://github.com/Aarushi-Pandey/Portfolio_ML)
- 2. Brandon's Portfolio (https://github.com/Unicoranium/CS4375)
- 3. Zaiquiri's Portfolio (https://zaiquiriw.github.io/ml-portfolio/)
- 4. Gray's Porfolio (https://ecclysium.github.io/MachineLearning_Portfolio/)