Classification with SVM

Zachary Canoot *Gray Simpson †

23 October, 2022

SVM Classification

Support Vector Machines can divide data into classes by a hyperplane in multidimensional space. This line separates classes by finding minimum distance of margins between support vectors. Once we calculate support vectors for our model (given an input of slack in the margins optimized with validation data), we can then classify the data in relation to the margins on the hyperplane.

We are going to apply this classification model to data we have used in the past, census data from 1994, and hope to improve previous results at predicting income class.

Exploring Our Data

As before, the data is stored as two files, with rows just delimited by commas, so we read them in to one whole data frame, and label the headers manual using our source as a reference. It's worth noting that this data was extracted with the intention of creating a classification model, so the two files are meant to be training and test data, but we are going to re-distribute the data sets to train and test later.

Factoring and splitting our data, we can explore the data with a bit more ease. We are going to sample down the data size to 10,000 for shorter compilation times as well.

```
income_train <- read.table("adult.data", sep=",", header=FALSE)</pre>
income_test <- read.table("adult.test", sep=",", header=FALSE)</pre>
income <- rbind(income_test, income_train)</pre>
colnames(income) <- c("Age", "WorkClass", "Weight", "Education", "YearsEdu", "Marital-Status", "Job", "
# Note here that while sapply returns a vector, lapply returns a list
income[, sapply(income, is.character)] <- lapply(income[, sapply(income, is.character)], as.factor)</pre>
levels(income$IncomeClass) <- c("<=50k", "<=50k", ">50k", ">50k")
# Then remove the attribute weight using it's index
set.seed(8)
income <- income[sample(1:nrow(income),10000,replace=FALSE),]</pre>
spec <- c(train=.6, test=.2, validate=.2)</pre>
i <- sample(cut(1:nrow(income), nrow(income)*cumsum(c(0,spec)), labels=names(spec)))</pre>
train <- income[i=="train",]</pre>
test <- income[i=="test",]</pre>
vald <- income[i=="validate",]</pre>
# Cleaning up earlier data
rm("income", "income_test", "income_train")
```

^{*}Zaiquiri's Portfolio

[†]Gray's Porfolio

summary(train)

```
##
         Age
                                  WorkClass
                                                     Weight
##
    {\tt Min.}
           :17.00
                                                        : 13769
                      Private
                                        :4228
##
    1st Qu.:28.00
                      Self-emp-not-inc: 479
                                                1st Qu.: 119885
##
    Median :37.00
                      Local-gov
                                        : 385
                                                Median: 179607
    Mean
            :38.49
                                        : 325
                                                        : 190855
##
                                                Mean
##
    3rd Qu.:48.00
                      State-gov
                                        : 233
                                                3rd Qu.: 238203
##
    Max.
            :90.00
                      Self-emp-inc
                                        : 192
                                                Max.
                                                        :1366120
##
                     (Other)
                                        : 158
##
                              YearsEdu
                                                            Marital-Status
             Education
                                                                    : 762
##
     HS-grad
                  :1972
                          Min.
                                  : 1.00
                                             Divorced
##
     Some-college:1300
                           1st Qu.: 9.00
                                             Married-AF-spouse
                          Median :10.00
                                             Married-civ-spouse
                                                                    :2798
##
     Bachelors
                  :1004
##
     Masters
                  : 305
                          Mean
                                  :10.03
                                             Married-spouse-absent:
                                                                       62
##
     Assoc-voc
                  : 251
                           3rd Qu.:12.00
                                             Never-married
                                                                    :1990
##
                                  :16.00
                                             Separated
                                                                    : 206
     11th
                  : 248
                           Max.
##
    (Other)
                  : 920
                                             Widowed
                                                                      178
##
                   Job
                                        Relationship
                                                                         Race
##
     Exec-managerial: 784
                               Husband
                                              :2443
                                                        Amer-Indian-Eskimo:
##
                               Not-in-family :1502
     Craft-repair
                     : 751
                                                        Asian-Pac-Islander: 193
##
     Prof-specialty: 739
                               Other-relative: 179
                                                        Black
                                                                            : 535
##
     Sales
                     : 687
                               Own-child
                                              : 953
                                                        Other
                                                                               45
##
     Adm-clerical
                     : 662
                               Unmarried
                                              : 615
                                                        White
                                                                            :5172
##
     Other-service : 601
                                                308
                               Wife
                     :1776
##
    (Other)
##
                     CapitalGain
         Sex
                                      CapitalLoss
                                                         HoursWorked
##
     Female:2004
                    Min.
                                     Min.
                                                  0.0
                                                        Min.
                                                                : 1.00
##
     Male :3996
                    1st Qu.:
                                 0
                                      1st Qu.:
                                                  0.0
                                                        1st Qu.:40.00
##
                    Median:
                                 0
                                     Median:
                                                 0.0
                                                        Median :40.00
##
                            : 1061
                                                                :40.15
                    Mean
                                     Mean
                                                78.1
                                                        Mean
##
                    3rd Qu.:
                                 0
                                      3rd Qu.:
                                                  0.0
                                                        3rd Qu.:45.00
##
                    Max.
                            :99999
                                     Max.
                                             :3004.0
                                                        Max.
                                                                :99.00
##
                           IncomeClass
##
           NativeCountry
##
     United-States:5407
                            <=50k:4523
                            >50k :1477
##
     Mexico
                   : 114
##
     ?
                      96
##
     Philippines
                      39
##
                      31
     Canada
##
     Puerto-Rico
                   :
                      26
##
    (Other)
                   : 287
```

While the data is complex, we can see in the summary that there are of course averages we can determine the average person who recorded census data. He is a man with some high school experience about to enter his 40's, married, and born and raised in the USA. There is some skew in the data, but in the interest of time we'll not dig into stratifying the data right now.

```
cdplot(train$Age, train$IncomeClass)
```



```
breaks <- (0:10)*10
plot(train$IncomeClass ~ findInterval(train$HoursWorked, breaks))</pre>
```


plot(train\$Sex, train\$IncomeClass)

Just as a reminder as well, while ever predictor helps improve the model, some relationships are more clear/obvious:

- Men make more then women!
- The longer you work, the more money you make
- People make the most of their money in their 40's and 50's (if they are making money)

Truly because the data has so many factors, exploring the data doesn't help too well getting the whole picture that our eventual model will produce. At least in our opinion.

Baseline Naive Bayes

We are going to compare our results to Naive Bayes this time for analysis, as we are most interested in the comparison to the performance to the radial kernel (for their ability to handle overlapping data).

```
library(e1071)
nb1 <- naiveBayes(train$IncomeClass~., data=train)
pred1 <- predict(nb1, newdata=test, type="class")
cm <- caret::confusionMatrix(as.factor(pred1), test$IncomeClass)
cm</pre>
```

```
\mbox{\tt \#\#} Confusion Matrix and Statistics
```

##

```
##
             Reference
## Prediction <=50k >50k
##
        <=50k 1404 254
        >50k
##
                113
                     229
##
##
                  Accuracy : 0.8165
##
                    95% CI: (0.7988, 0.8332)
       No Information Rate: 0.7585
##
##
       P-Value [Acc > NIR] : 2.539e-10
##
##
                     Kappa: 0.4438
##
    Mcnemar's Test P-Value : 2.713e-13
##
##
##
               Sensitivity: 0.9255
##
               Specificity: 0.4741
##
            Pos Pred Value: 0.8468
##
            Neg Pred Value: 0.6696
##
                Prevalence: 0.7585
##
            Detection Rate: 0.7020
##
      Detection Prevalence: 0.8290
##
         Balanced Accuracy: 0.6998
##
##
          'Positive' Class : <=50k
##
```

We are trying to beat a baseline accuracy of ~81 percent, and considering the skew in our data, a kappa of ~.44. Reducing our data set to reduce compilation times for SVM did lower our original accuracy from a previous notebook (82 percent), but it will hopefully have returns in our final predictions.

Performing SVM Classification

Linear Kernel

```
svmlin <- svm(IncomeClass~., data=train, kernel="linear", cost=10, scale=TRUE)
summary(svmlin)</pre>
```

```
##
## Call:
## svm(formula = IncomeClass ~ ., data = train, kernel = "linear", cost = 10,
##
       scale = TRUE)
##
##
## Parameters:
##
      SVM-Type:
                 C-classification
##
    SVM-Kernel:
                 linear
##
          cost:
##
## Number of Support Vectors:
##
##
   (1012 997)
```

```
##
##
## Number of Classes: 2
##
## Levels:
## <=50k >50k
pred1 <- predict(svmlin, newdata=test)</pre>
cmlin <- caret::confusionMatrix(as.factor(pred1), test$IncomeClass)</pre>
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction <=50k >50k
        <=50k 1411 202
##
##
        >50k
               106 281
##
##
                  Accuracy: 0.846
                    95% CI: (0.8294, 0.8616)
##
##
       No Information Rate: 0.7585
       P-Value [Acc > NIR] : < 2.2e-16
##
##
##
                     Kappa: 0.5491
##
   Mcnemar's Test P-Value: 6.193e-08
##
##
               Sensitivity: 0.9301
##
##
               Specificity: 0.5818
            Pos Pred Value: 0.8748
##
##
            Neg Pred Value: 0.7261
                Prevalence: 0.7585
##
##
            Detection Rate: 0.7055
##
      Detection Prevalence: 0.8065
##
         Balanced Accuracy: 0.7560
##
##
          'Positive' Class : <=50k
##
We see an increase in accuracy, but lets tune anyway.
tune_svmlin <- tune(svm, IncomeClass~., data = vald, kernel="linear", ranges=list(cost=c(0.001, 0.01, 0
tune_svmlin$best.model
##
## best.tune(method = svm, train.x = IncomeClass ~ ., data = vald, ranges = list(cost = c(0.001,
       0.01, 0.1, 1, 5, 10, 100)), kernel = "linear")
##
##
## Parameters:
     SVM-Type: C-classification
## SVM-Kernel: linear
```

```
##
          cost: 0.1
##
## Number of Support Vectors: 732
It estimates quite a low cost function, which bodes well for an increase in our accuracy
svmlin <- svm(IncomeClass~., data=train, kernel="linear", cost=.1, scale=TRUE)</pre>
pred2 <- predict(svmlin, newdata=test)</pre>
tuned_cmlin <- caret::confusionMatrix(as.factor(pred2), test$IncomeClass)</pre>
tuned_cmlin
## Confusion Matrix and Statistics
##
             Reference
##
## Prediction <=50k >50k
##
        <=50k 1412 208
        >50k
                105 275
##
##
                   Accuracy : 0.8435
##
                     95% CI : (0.8268, 0.8592)
##
       No Information Rate: 0.7585
##
##
       P-Value [Acc > NIR] : < 2.2e-16
##
##
                      Kappa: 0.5393
##
    Mcnemar's Test P-Value: 8.147e-09
##
##
##
               Sensitivity: 0.9308
##
               Specificity: 0.5694
##
            Pos Pred Value: 0.8716
            Neg Pred Value: 0.7237
##
##
                 Prevalence: 0.7585
##
            Detection Rate: 0.7060
##
      Detection Prevalence: 0.8100
##
         Balanced Accuracy: 0.7501
##
          'Positive' Class : <=50k
##
##
```

There was an increase with a bit of tuning. Still hopeful for better results.

Polynomial Kernel

```
svmpoly <- svm(IncomeClass~., data=train, kernel="polynomial", cost=.1, scale=TRUE)
summary(svmpoly)

##
## Call:
## svm(formula = IncomeClass ~ ., data = train, kernel = "polynomial",
## cost = 0.1, scale = TRUE)
##</pre>
```

```
##
## Parameters:
      SVM-Type: C-classification
##
##
    SVM-Kernel: polynomial
##
          cost: 0.1
        degree: 3
##
##
        coef.0: 0
##
## Number of Support Vectors: 2965
##
##
    ( 1511 1454 )
##
##
## Number of Classes: 2
##
## Levels:
  <=50k >50k
pred3 <- predict(svmpoly, newdata=test)</pre>
cmpoly <- caret::confusionMatrix(as.factor(pred3), test$IncomeClass)</pre>
cmpoly
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction <=50k >50k
##
        <=50k 1517
                     474
##
        >50k
                  0
##
##
                  Accuracy: 0.763
##
                    95% CI : (0.7437, 0.7815)
##
       No Information Rate: 0.7585
##
       P-Value [Acc > NIR] : 0.3298
##
##
                     Kappa : 0.028
##
##
    Mcnemar's Test P-Value : <2e-16
##
##
               Sensitivity: 1.00000
               Specificity: 0.01863
##
##
            Pos Pred Value: 0.76193
##
            Neg Pred Value: 1.00000
##
                Prevalence: 0.75850
##
            Detection Rate: 0.75850
##
      Detection Prevalence: 0.99550
##
         Balanced Accuracy: 0.50932
##
##
          'Positive' Class : <=50k
##
```

Well... we didn't expect a radically low kappa but that was because the default degree value is quite extreme, lets tune

```
tune_sympoly <- tune(sym, IncomeClass~., data = vald, kernel="polynomial", ranges=list(cost=c(0.001, 0.
tune_svmpoly$best.model
##
## Call:
## best.tune(method = svm, train.x = IncomeClass ~ ., data = vald, ranges = list(cost = c(0.001,
       0.01, 0.1, 1, 5, 10, 100), degree = c(1, 2, 3)), kernel = "polynomial")
##
##
## Parameters:
      SVM-Type: C-classification
##
##
    SVM-Kernel: polynomial
##
          cost: 10
        degree: 1
##
        coef.0: 0
##
##
## Number of Support Vectors: 733
It found a linear result, but it did raise the cost from our previous linear test which is quite interesting
svmpoly <- svm(IncomeClass~., data=train, kernel="polynomial", cost=10, degree=1, scale=TRUE)</pre>
pred4 <- predict(sympoly, newdata=test)</pre>
tuned_cmpoly <- caret::confusionMatrix(as.factor(pred4), test$IncomeClass)</pre>
tuned_cmpoly
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction <=50k >50k
        <=50k 1413 209
##
        >50k
                104 274
##
##
##
                  Accuracy : 0.8435
                    95% CI : (0.8268, 0.8592)
##
       No Information Rate: 0.7585
##
       P-Value [Acc > NIR] : < 2.2e-16
##
##
##
                     Kappa: 0.5386
##
   Mcnemar's Test P-Value: 4.142e-09
##
##
##
               Sensitivity: 0.9314
               Specificity: 0.5673
##
##
            Pos Pred Value: 0.8711
##
            Neg Pred Value: 0.7249
##
                Prevalence: 0.7585
            Detection Rate: 0.7065
##
##
      Detection Prevalence: 0.8110
##
         Balanced Accuracy: 0.7494
##
##
          'Positive' Class : <=50k
##
```

This is a solid result, with really a statistically insignificant result compared to our other models. Lets test a Radial Kernel!

Radial Kernel

```
svmrad <- svm(IncomeClass~., data=train, kernel="radial", cost=.1, gamma=1, scale=TRUE)</pre>
summary(svmrad)
##
## Call:
## svm(formula = IncomeClass ~ ., data = train, kernel = "radial", cost = 0.1,
       gamma = 1, scale = TRUE)
##
##
## Parameters:
##
      SVM-Type: C-classification
   SVM-Kernel: radial
##
##
          cost: 0.1
##
## Number of Support Vectors: 5360
##
##
   ( 3883 1477 )
##
##
## Number of Classes: 2
##
## Levels:
## <=50k >50k
pred5 <- predict(svmrad, newdata=test)</pre>
cmrad <- caret::confusionMatrix(as.factor(pred5), test$IncomeClass)</pre>
cmrad
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction <=50k >50k
##
        <=50k 1514 471
        >50k
##
                  3
                      12
##
##
                  Accuracy: 0.763
##
                    95% CI : (0.7437, 0.7815)
       No Information Rate: 0.7585
##
##
       P-Value [Acc > NIR] : 0.3298
##
##
                     Kappa : 0.0341
##
   Mcnemar's Test P-Value : <2e-16
##
##
##
               Sensitivity: 0.99802
```

Specificity: 0.02484

##

```
##
            Neg Pred Value: 0.80000
##
                Prevalence: 0.75850
##
            Detection Rate: 0.75700
##
      Detection Prevalence: 0.99250
##
         Balanced Accuracy: 0.51143
##
          'Positive' Class : <=50k
##
##
Well... we didn't expect a radically low kappa but that was because the default degree value is quite
extreme, lets tune
tune_svmrad <- tune(svm, IncomeClass~., data = vald, kernel="radial", ranges=list(cost=c(0.001, 0.01, 0
tune_svmrad$best.model
##
## Call:
## best.tune(method = svm, train.x = IncomeClass ~ ., data = vald, ranges = list(cost = c(0.001,
       0.01, 0.1, 1), gamma = c(0.1, 0.5, 1)), kernel = "radial")
##
##
##
## Parameters:
##
      SVM-Type: C-classification
##
   SVM-Kernel: radial
##
          cost:
##
## Number of Support Vectors: 926
Inputting the tuned parameters into the radial model one final time:
svmrad <- svm(IncomeClass~., data=train, kernel="radial", cost=1, gamma=.1, scale=TRUE)</pre>
pred6 <- predict(svmrad, newdata=test)</pre>
tuned_cmrad <- caret::confusionMatrix(as.factor(pred6), test$IncomeClass)</pre>
tuned cmrad
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction <=50k >50k
        <=50k 1429 209
##
        >50k
                 88 274
##
##
##
                  Accuracy: 0.8515
                    95% CI: (0.8352, 0.8668)
##
##
       No Information Rate: 0.7585
       P-Value [Acc > NIR] : < 2.2e-16
##
##
##
                      Kappa: 0.5568
##
##
    Mcnemar's Test P-Value: 3.329e-12
##
```

##

Pos Pred Value: 0.76272

```
##
               Sensitivity: 0.9420
##
               Specificity: 0.5673
##
            Pos Pred Value: 0.8724
##
            Neg Pred Value: 0.7569
##
                Prevalence: 0.7585
            Detection Rate: 0.7145
##
      Detection Prevalence: 0.8190
##
         Balanced Accuracy: 0.7546
##
##
##
          'Positive' Class : <=50k
##
```

That is only marginally better then our Naive Bayes base line result

Analysis

Briefly describing the kernels:

- The linear kernel is simple, it fits a hyperplane to the data
- The polynomial kernel transforms the data in such a way to mimic adding more features to the data set, really just by mapping the input data to a polynomial of a higher degree. By mapping values in a higher degree space, say, to the second degree, what really is a circular data set classification can now have a straight line drawn through it.
- The radial kernel compares the distance between every 2 values in the input data, and scales the data by the value of it's distance. This mimics nearest neighbor, where the model predicts every value with increasing weight supplied to its neighbors. The kernel can then map the input to a higher (infinite) dimensional space where it is easiest to fit a hyperplane that best maximizes the margins of the model... it's not exactly easy to wrap a brain around

For all three of these kernels we got increasingly better results, slowly growing more accurate then our last attempts to fit the data to a model. This could be a result of really the complexity of the data, and how hard it is to truly predict something like someone's income bracket based on a snapshot of their socioeconomic status. While it is almost always the case that SVM is better than Naive Bayes, perhaps we were hitting the upper bound of what we could predict, meaning only a 3% increase in accuracy

By any case, 3% more accuracy could be a meaningful increase based on what the model is used for. We really should be aiming for 99% accuracy though. This would perhaps require trimming the data, or running some ensemble methods!