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SVM C(lassification

Support Vector Machines can divide data into classes by a hyperplane in multidimensional space. This
line separates classes by finding minimum distance of margins between support vectors. Once we calculate
support vectors for our model (given an input of slack in the margins optimized with validation data), we
can then classify the data in relation to the margins on the hyperplane.

We are going to apply this classification model to data we have used in the past, census data from 1994, and
hope to improve previous results at predicting income class.

Exploring Our Data

As before, the data is stored as two files, with rows just delimited by commas, so we read them in to one
whole data frame, and label the headers manual using our source as a reference. It’s worth noting that this
data was extracted with the intention of creating a classification model, so the two files are meant to be
training and test data, but we are going to re-distribute the data sets to train and test later.

Factoring and splitting our data, we can explore the data with a bit more ease. We are going to sample
down the data size to 10,000 for shorter compilation times as well.

income_train <- read.table('"adult.data", oy FALSE)

income_test <- read.table("adult.test", ", FALSE)

income <- rbind(income_test, income_train)

colnames(income) <- c("Age", "WorkClass", "Weight", "Education", "YearsEdu", "Marital-Status", "Job", "I
# Note here that while sapply returns a vector, lapply returns a list

income[, sapply(income, is.character)] <- lapply(income[, sapply(income, is.character)], as.factor)
levels(income$IncomeClass) <- c("<=50k", "<=50k", ">50k", ">50k")

# Then remove the attribute weight using it's index

set.seed(8)

income <- income[sample(l:nrow(income), 10000, FALSE),]
spec <- c( .6, .2, .2)
i <- sample(cut(l:nrow(income), nrow(income)*cumsum(c(0,spec)), names (spec)))

train <- income[i=="train",]

test <- incomel[i=="test",]

vald <- income[i=="validate",]

# Cleaning up earlier data

rm("income", "income_test", "income_train")
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summary (train)

## Age WorkClass Weight

## Min. :17.00 Private :4228  Min. 13769

## 1st Qu.:28.00 Self-emp-not-inc: 479 1st Qu.: 119885

## Median :37.00 Local-gov : 385 Median : 179607

## Mean :38.49 ? : 3256 Mean : 190855

## 3rd Qu.:48.00 State-gov : 233 3rd Qu.: 238203

## Max. :90.00 Self-emp-inc 192  Max. 11366120

## (Other) 158

#i# Education YearsEdu Marital-Status

##  HS-grad :1972  Min. : 1.00 Divorced 1 762

##  Some-college:1300 1st Qu.: 9.00 Married-AF-spouse 4

##  Bachelors :1004 Median :10.00 Married-civ-spouse 12798

##  Masters : 305 Mean :10.03 Married-spouse-absent: 62

## Assoc-voc : 251 3rd Qu.:12.00 Never-married :1990

#i# 11th : 248 Max. :16.00 Separated : 206

## (Other) : 920 Widowed 178

## Job Relationship Race

##  Exec-managerial: 784 Husband 12443 Amer-Indian-Eskimo: 55
##  Craft-repair : 751 Not-in-family :1502 Asian-Pac-Islander: 193
##  Prof-specialty : 739 Other-relative: 179 Black : 535
##  Sales : 687 Own-child : 953 Other : 45
##  Adm-clerical : 662 Unmarried : 615 White 15172
##  Other-service : 601 Wife : 308

## (Other) 11776

## Sex CapitalGain CapitalLoss HoursWorked

##  Female:2004  Min. : 0 Min. : 0.0 Min. : 1.00

## Male :3996 1st Qu.: 0 1st Qu.: 0.0 1st Qu.:40.00

#it Median : 0 Median : 0.0 Median :40.00

#it Mean 1061  Mean 78.1  Mean :40.15

#i#t 3rd Qu.: 0 3rd Qu.: 0.0 3rd Qu.:45.00

#i# Max. 199999  Max. :3004.0  Max. :99.00

##

## NativeCountry IncomeClass

##  United-States:5407  <=50k:4523

##  Mexico 114 >50k :1477

#o7 96

## Philippines 39

##  Canada 31

##  Puerto-Rico 26

## (Other) 1 287

While the data is complex, we can see in the summary that there are of course averages we can determine
the average person who recorded census data. He is a man with some high school experience about to enter
his 40’s, married, and born and raised in the USA. There is some skew in the data, but in the interest of
time we’ll not dig into stratifying the data right now.

cdplot (train$Age, train$IncomeClass)
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train$Age

breaks <- (0:10)*10
plot(train$IncomeClass ~ findInterval(train$HoursWorked, breaks))
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findinterval(trainHoursWorked, breaks)

plot(train$Sex, train$IncomeClass)
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Just as a reminder as well, while ever predictor helps improve the model, some relationships are more
clear /obvious:

e Men make more then women!

e The longer you work, the more money you make

o People make the most of their money in their 40’s and 50’s (if they are making money)

Truly because the data has so many factors, exploring the data doesn’t help too well getting the whole
picture that our eventual model will produce. At least in our opinion.

Baseline Naive Bayes

We are going to compare our results to Naive Bayes this time for analysis, as we are most interested in the
comparison to the performance to the radial kernel (for their ability to handle overlapping data).

library(e1071)

nbl <- naiveBayes(train$IncomeClass~., data=train)

predl <- predict(nbl, newdata=test, type="class")

cm <- caret::confusionMatrix(as.factor(predl), test$IncomeClass)
cm

## Confusion Matrix and Statistics
##
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We are trying to beat a baseline accuracy of ~81 percent, and considering the skew in our data, a kappa of
~.44. Reducing our data set to reduce compilation times for SVM did lower our original accuracy from a
previous notebook (82 percent), but it will hopefully have returns in our final predictions.

Performing SVM Classification

Linear Kernel

svmlin <- svm(IncomeClass~., train, "linear", 10, TRUE)
summary (svmlin)

##

## Call:

## svm(formula = IncomeClass ~ ., data = train, kernel = "linear", cost = 10,
#it scale = TRUE)

##

##

## Parameters:

## SVM-Type: C-classification

## SVM-Kernel: linear

## cost: 10

#i#

## Number of Support Vectors: 2009

##

## (1012 997 )



##

#it

## Number of Classes: 2
##

## Levels:

## <=b0k >b0k

predl <- predict(svmlin, test)
cmlin <- caret::confusionMatrix(as.factor(predl), test$IncomeClass)
cmlin

## Confusion Matrix and Statistics

##

## Reference

## Prediction <=50k >50k

#it <=50k 1411 202

## >50k 106 281

##

## Accuracy : 0.846

## 95% CI : (0.8294, 0.8616)
#it No Information Rate : 0.7585

## P-Value [Acc > NIR] : < 2.2e-16
##

## Kappa : 0.5491

##

## Mcnemar’s Test P-Value : 6.193e-08
##

## Sensitivity : 0.9301

## Specificity : 0.5818

## Pos Pred Value : 0.8748

## Neg Pred Value : 0.7261

#it Prevalence : 0.7585

## Detection Rate : 0.7055

## Detection Prevalence : 0.8065

## Balanced Accuracy : 0.7560

##

## ’Positive’ Class : <=50k

##

We see an increase in accuracy, but lets tune anyway.

tune_svmlin <- tune(svm, IncomeClass-~., vald, "linear", list( c(0.001, 0.01, O
tune_svmlin$best.model

#i#

## Call:

## best.tune(method = svm, train.x = IncomeClass ~ ., data = vald, ranges = list(cost = c(0.001,
#it 0.01, 0.1, 1, 5, 10, 100)), kernel = "linear")

##

##

## Parameters:

#H# SVM-Type: C-classification

## SVM-Kernel: linear



#it cost: 0.1
##
## Number of Support Vectors: 732

It estimates quite a low cost function, which bodes well for an increase in our accuracy

svmlin <- svm(IncomeClass~., train, "linear", .1,
pred2 <- predict(svmlin, test)

tuned_cmlin <- caret::confusionMatrix(as.factor(pred2), test$IncomeClass)

tuned_cmlin

## Confusion Matrix and Statistics

#it

## Reference

## Prediction <=50k >50k

## <=50k 1412 208

## >50k 105 275

#it

#i# Accuracy : 0.8435

## 95% CI : (0.8268, 0.8592)
## No Information Rate : 0.7585

## P-Value [Acc > NIR] : < 2.2e-16
#i#

#i# Kappa : 0.5393

##

## Mcnemar’s Test P-Value : 8.147e-09
##

## Sensitivity : 0.9308

## Specificity : 0.5694

## Pos Pred Value : 0.8716

## Neg Pred Value : 0.7237

## Prevalence : 0.7585

## Detection Rate : 0.7060

## Detection Prevalence : 0.8100

#i# Balanced Accuracy : 0.7501

##

## ’Positive’ Class : <=50k

##

There was an increase with a bit of tuning. Still hopeful for better results.

Polynomial Kernel

svmpoly <- svm(IncomeClass~., train, "polynomial", .1,
summary (svmpoly)

##

## Call:

## svm(formula = IncomeClass ~ ., data = train, kernel = "polynomial",
#i# cost = 0.1, scale = TRUE)

##

TRUE)



#i#

## Parameters:

## SVM-Type: C-classification
## SVM-Kernel: polynomial

#it cost: 0.1

## degree: 3

## coef.0: O

##

## Number of Support Vectors: 2965
##

## (1511 1454 )

##

#i#

## Number of Classes: 2
##

## Levels:

## <=50k >50k

pred3 <- predict(svmpoly, test)
cmpoly <- caret::confusionMatrix(as.factor(pred3), test$IncomeClass)
cmpoly

## Confusion Matrix and Statistics

##

## Reference

## Prediction <=50k >50k

## <=50k 1517 474

## >50k 0 9

##

#i# Accuracy : 0.763
#it 95% CI : (0.7437, 0.7815)
## No Information Rate : 0.7585
#it P-Value [Acc > NIR] : 0.3298
##

## Kappa : 0.028
##

## Mcnemar’s Test P-Value : <2e-16
##

## Sensitivity : 1.00000
## Specificity : 0.01863
## Pos Pred Value : 0.76193
#i# Neg Pred Value : 1.00000
## Prevalence : 0.75850
## Detection Rate : 0.75850
## Detection Prevalence : 0.99550
## Balanced Accuracy : 0.50932
##

## ’Positive’ Class : <=50k
##

Well... we didn’t expect a radically low kappa but that was because the default degree value is quite

extreme, lets tune



tune_svmpoly <- tune(svm, IncomeClass-~., vald, "polynomial", list( c(0.001, 0.

tune_svmpoly$best.model

##

## Call:

## best.tune(method = svm, train.x = IncomeClass ~ ., data = vald, ranges = list(cost = c(0.001,
##t 0.01, 0.1, 1, 5, 10, 100), degree = c(1, 2, 3)), kernel = "polynomial")

##

##

## Parameters:

## SVM-Type: C-classification

## SVM-Kernel: polynomial

## cost: 10
## degree: 1

## coef.0: O

#i#

## Number of Support Vectors: 733

It found a linear result, but it did raise the cost from our previous linear test which is quite interesting

svmpoly <- svm(IncomeClass~., train, "polynomial", 10, 1, TRUE)
pred4 <- predict(svmpoly, test)

tuned_cmpoly <- caret::confusionMatrix(as.factor(pred4), test$IncomeClass)

tuned_cmpoly

## Confusion Matrix and Statistics

##

## Reference

## Prediction <=50k >50k

## <=50k 1413 209

#it >50k 104 274

##

## Accuracy : 0.8435

## 95% CI : (0.8268, 0.8592)
## No Information Rate : 0.7585

#it P-Value [Acc > NIR] : < 2.2e-16
##

## Kappa : 0.5386

##

## Mcnemar’s Test P-Value : 4.142e-09
##

#i# Sensitivity : 0.9314

## Specificity : 0.5673

## Pos Pred Value : 0.8711

## Neg Pred Value : 0.7249

## Prevalence : 0.7585

#i# Detection Rate : 0.7065

## Detection Prevalence : 0.8110

## Balanced Accuracy : 0.7494

##

## ’Positive’ Class : <=b0k

#it
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This is a solid result, with really a statistically insignificant result compared to our other models. Lets test
a Radial Kernel!

Radial Kernel

svmrad <- svm(IncomeClass-~., train, "radial", .1, 1, TRUE)
summary (svmrad)

##

## Call:

## svm(formula = IncomeClass ~ ., data = train, kernel = "radial", cost = 0.1,

## gamma = 1, scale = TRUE)

##

##

## Parameters:

## SVM-Type: C-classification
## SVM-Kernel: radial

#i# cost: 0.1

##

## Number of Support Vectors: 5360
##

## ( 3883 1477 )

##

##

## Number of Classes: 2

##

## Levels:

## <=b0k >b0k

pred5 <- predict(svmrad, test)
cmrad <- caret::confusionMatrix(as.factor(pred5), test$IncomeClass)
cmrad

## Confusion Matrix and Statistics

#it

## Reference

## Prediction <=50k >50k

## <=50k 1514 471

#i# >50k 3 12

#it

## Accuracy : 0.763
## 95% CI : (0.7437, 0.7815)
## No Information Rate : 0.7585
## P-Value [Acc > NIR] : 0.3298
#i#

#i# Kappa : 0.0341
##

## Mcnemar’s Test P-Value : <2e-16
##

## Sensitivity : 0.99802
#H# Specificity : 0.02484
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## Pos Pred Value : 0.76272
## Neg Pred Value : 0.80000
## Prevalence : 0.75850
## Detection Rate : 0.75700
## Detection Prevalence : 0.99250
## Balanced Accuracy : 0.51143
#i#

## ’Positive’ Class : <=50k
##

Well... we didn’t expect a radically low kappa but that was because the default degree value is quite
extreme, lets tune

tune_svmrad <- tune(svm, IncomeClass~., vald, "radial", list( c(0.001, 0.01, O
tune_svmrad$best.model

##

## Call:

## best.tune(method = svm, train.x = IncomeClass ~ ., data = vald, ranges = list(cost = c(0.001,
## 0.01, 0.1, 1), gamma = c(0.1, 0.5, 1)), kernel = "radial")
##

##

## Parameters:

## SVM-Type: C-classification

## SVM-Kernel: radial

## cost: 1

##

## Number of Support Vectors: 926

Inputting the tuned parameters into the radial model one final time:

svmrad <- svm(IncomeClass~., train, "radial", 1, .1, TRUE)
pred6 <- predict(svmrad, test)

tuned_cmrad <- caret::confusionMatrix(as.factor(pred6), test$IncomeClass)

tuned_cmrad

## Confusion Matrix and Statistics

##

## Reference

## Prediction <=50k >50k

## <=50k 1429 209

## >50k 88 274

##

#i# Accuracy : 0.8515

## 95% CI : (0.8352, 0.8668)
## No Information Rate : 0.7585

## P-Value [Acc > NIR] : < 2.2e-16
#i#

## Kappa : 0.5568

##

## Mcnemar’s Test P-Value : 3.329e-12
##
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## Sensitivity : 0.9420
## Specificity : 0.5673
## Pos Pred Value : 0.8724
## Neg Pred Value : 0.7569
## Prevalence : 0.7585
## Detection Rate : 0.7145
## Detection Prevalence : 0.8190
## Balanced Accuracy : 0.7546
##

## ’Positive’ Class : <=b0k
##

That is only marginally better then our Naive Bayes base line result

Analysis

Briefly describing the kernels:

o The linear kernel is simple, it fits a hyperplane to the data

e The polynomial kernel transforms the data in such a way to mimic adding more features to the data
set, really just by mapping the input data to a polynomial of a higher degree. By mapping values in a
higher degree space, say, to the second degree, what really is a circular data set classification can now
have a straight line drawn through it.

e The radial kernel compares the distance between every 2 values in the input data, and scales the data
by the value of it’s distance. This mimics nearest neighbor, where the model predicts every value
with increasing weight supplied to its neighbors. The kernel can then map the input to a higher
(infinite) dimensional space where it is easiest to fit a hyperplane that best maximizes the margins of
the model. .. it’s not exactly easy to wrap a brain around

For all three of these kernels we got increasingly better results, slowly growing more accurate then our last
attempts to fit the data to a model. This could be a result of really the complexity of the data, and how hard
it is to truly predict something like someone’s income bracket based on a snapshot of their socioeconomic
status. While it is almost always the case that SVM is better than Naive Bayes, perhaps we were hitting
the upper bound of what we could predict, meaning only a 3% increase in accuracy

By any case, 3% more accuracy could be a meaningful increase based on what the model is used for. We
really should be aiming for 99% accuracy though. This would perhaps require trimming the data, or running
some ensemble methods!
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